Suppr超能文献

CCFM1339 抑制 诱导的小鼠阴道上皮屏障损伤。

CCFM1339 Inhibits Vaginal Epithelial Barrier Injury Induced by in Mice.

机构信息

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.

School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.

出版信息

Biomolecules. 2024 Feb 18;14(2):240. doi: 10.3390/biom14020240.

Abstract

The vaginal epithelial barrier, which integrates mechanical, immune, chemical, and microbial defenses, is pivotal in safeguarding against external pathogens and upholding the vaginal microecological equilibrium. Although the widely used metronidazole effectively curtails , a key pathogen in bacterial vaginosis, it falls short in restoring the vaginal barrier or reducing recurrence rates. Our prior research highlighted CCFM1339, a vaginally derived strain, for its capacity to modulate the vaginal epithelial barrier. In cellular models, CCFM1339 fortified the integrity of the cellular monolayer, augmented cellular migration, and facilitated repair. Remarkably, in animal models, CCFM1339 substantially abated the secretion of the barrier disruption biomarker E-cadherin (from 101.45 to 82.90 pg/mL) and increased the anti-inflammatory cytokine IL-10 (35.18% vs. the model), consequently mitigating vaginal inflammation in mice. Immunological assays in vaginal tissues elucidated increased secretory IgA levels (from 405.56 to 740.62 ng/mL) and curtailed gene expression. Moreover, CCFM1339 enhanced abundance and attenuated and within the vaginal microbiome, underscoring its potential in probiotic applications for vaginal barrier regulation.

摘要

阴道上皮屏障整合了机械、免疫、化学和微生物防御,对于抵御外来病原体和维持阴道微生态平衡至关重要。尽管广泛使用的甲硝唑能有效抑制细菌性阴道病的关键病原体,但它在恢复阴道屏障或降低复发率方面效果有限。我们之前的研究强调了阴道来源的菌株 CCFM1339 具有调节阴道上皮屏障的能力。在细胞模型中,CCFM1339 增强了细胞单层的完整性,促进了细胞迁移,并有助于修复。值得注意的是,在动物模型中,CCFM1339 显著减少了屏障破坏生物标志物 E-钙黏蛋白的分泌(从 101.45 降至 82.90 pg/mL),并增加了抗炎细胞因子 IL-10(与模型相比为 35.18%),从而减轻了小鼠的阴道炎症。阴道组织的免疫测定表明,分泌型 IgA 水平增加(从 405.56 增至 740.62 ng/mL),并抑制了相关基因的表达。此外,CCFM1339 增加了阴道微生物组中的 丰度,并减少了 和 的丰度,这表明它在阴道屏障调节的益生菌应用中具有潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea01/10886512/10fde3e0dad3/biomolecules-14-00240-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验