Deva Arun Kumar Karuppiah, Valanarasu S, Capelle Alex, Nar Sibel, Karim Wael, Stolz Arnaud, Aspe Barthélemy, Semmar Nadjib
Groupe de Recherches sur l'Énergétique des Milieux Ionisés, GREMI, Université d'Orléans, CNRS, 14 Rue d'Issoudun, 45067 Orléans, France.
Department of Physics, Arul Anandar College, Madurai 625514, India.
Micromachines (Basel). 2024 Jan 26;15(2):188. doi: 10.3390/mi15020188.
Previous studies have shown that undoped and doped SnO thin films have better optical and electrical properties. This study aims to investigate the thermoelectric properties of two distinct semiconducting oxide thin films, namely SnO and F-doped SnO (FTO), by the nebulizer spray pyrolysis technique. An X-ray diffraction study reveals that the synthesized films exhibit a tetragonal structure with the (200) preferred orientation. The film structural quality increases from SnO to FTO due to the substitution of F ions into the host lattice. The film thickness increases from 530 nm for SnO to 650 nm for FTO films. Room-temperature electrical resistivity decreases from (8.96 ± 0.02) × 10 Ω·cm to (4.64 ± 0.01) × 10 Ω·cm for the SnO and FTO thin films, respectively. This is due to the increase in the carrier density of the films, (2.92 ± 0.02) × 10 cm (SnO) and (1.63 ± 0.03) × 10 cm (FTO), caused by anionic substitution. It is confirmed that varying the temperature (K) enhances the electron transport properties. The obtained Seebeck coefficient () increases as the temperature is increased, up to 360 K. The synthesized films exhibit the value of -234 ± 3 μV/K (SnO) and -204 ± 3 μV/K (FTO) at 360 K. The estimated power factor (PF) drastically increases from ~70 (μW/m·K) to ~900 (μW/m·K) for the SnO and FTO film, respectively.
先前的研究表明,未掺杂和掺杂的SnO薄膜具有更好的光学和电学性能。本研究旨在通过雾化喷雾热解技术研究两种不同的半导体氧化物薄膜,即SnO和F掺杂的SnO(FTO)的热电性能。X射线衍射研究表明,合成的薄膜呈现出具有(200)择优取向的四方结构。由于F离子替代主体晶格,薄膜结构质量从SnO到FTO逐渐提高。薄膜厚度从SnO的530 nm增加到FTO薄膜的650 nm。室温下,SnO和FTO薄膜的电阻率分别从(8.96 ± 0.02) × 10 Ω·cm降至(4.64 ± 0.01) × 10 Ω·cm。这是由于阴离子替代导致薄膜载流子密度增加,分别为(2.92 ± 0.02) × 10 cm(SnO)和(1.63 ± 0.03) × 10 cm(FTO)。证实改变温度(K)可增强电子传输性能。所获得的塞贝克系数()随着温度升高而增加,直至360 K。在360 K时,合成薄膜的 值分别为-234 ± 3 μV/K(SnO)和-204 ± 3 μV/K(FTO)。对于SnO和FTO薄膜而言,估计的功率因数(PF)分别从70(μW/m·K)急剧增加到900(μW/m·K)。