Department of Electrical and Computer Engineering, University of Memphis, Memphis, TN 38152, USA.
Compute Science Department, Texas Tech University, Lubbock, TX 79409, USA.
Sensors (Basel). 2024 Feb 6;24(4):1054. doi: 10.3390/s24041054.
A deviation in the soundness of cognitive health is known as mild cognitive impairment (MCI), and it is important to monitor it early to prevent complicated diseases such as dementia, Alzheimer's disease (AD), and Parkinson's disease (PD). Traditionally, MCI severity is monitored with manual scoring using the Montreal Cognitive Assessment (MoCA). In this study, we propose a new MCI severity monitoring algorithm with regression analysis of extracted features of single-channel electro-encephalography (EEG) data by automatically generating severity scores equivalent to MoCA scores. We evaluated both multi-trial and single-trail analysis for the algorithm development. For multi-trial analysis, 590 features were extracted from the prominent event-related potential (ERP) points and corresponding time domain characteristics, and we utilized the lasso regression technique to select the best feature set. The 13 best features were used in the classical regression techniques: multivariate regression (MR), ensemble regression (ER), support vector regression (SVR), and ridge regression (RR). The best results were observed for ER with an RMSE of 1.6 and residual analysis. In single-trial analysis, we extracted a time-frequency plot image from each trial and fed it as an input to the constructed convolutional deep neural network (CNN). This deep CNN model resulted an RMSE of 2.76. To our knowledge, this is the first attempt to generate automated scores for MCI severity equivalent to MoCA from single-channel EEG data with multi-trial and single data.
认知健康的偏差被称为轻度认知障碍(MCI),早期监测它对于预防痴呆、阿尔茨海默病(AD)和帕金森病(PD)等复杂疾病非常重要。传统上,使用蒙特利尔认知评估(MoCA)进行手动评分来监测 MCI 的严重程度。在这项研究中,我们提出了一种新的 MCI 严重程度监测算法,通过对单通道脑电图(EEG)数据的提取特征进行回归分析,自动生成与 MoCA 评分相当的严重程度评分。我们对算法开发进行了多试和单试分析。对于多试分析,从明显的事件相关电位(ERP)点和相应的时域特征中提取了 590 个特征,我们利用套索回归技术选择了最佳特征集。使用经典回归技术:多元回归(MR)、集成回归(ER)、支持向量回归(SVR)和岭回归(RR)对 13 个最佳特征进行了分析。在 ER 中观察到最好的结果,其 RMSE 为 1.6,残差分析。在单试分析中,我们从每个试验中提取一个时频图图像,并将其作为输入馈送到构建的卷积深度神经网络(CNN)中。这个深度 CNN 模型的 RMSE 为 2.76。据我们所知,这是第一次尝试从单通道 EEG 数据中使用多试和单试数据生成与 MoCA 相当的 MCI 严重程度的自动评分。