Suppr超能文献

基于单通道 EEG 的语音诱发脑响应检测轻度认知障碍方法。

A Single-Channel EEG-Based Approach to Detect Mild Cognitive Impairment via Speech-Evoked Brain Responses.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2019 May;27(5):1063-1070. doi: 10.1109/TNSRE.2019.2911970. Epub 2019 Apr 18.

Abstract

Mild cognitive impairment (MCI) is the preliminary stage of dementia, which may lead to Alzheimer's disease (AD) in the elderly people. Therefore, early detection of MCI has the potential to minimize the risk of AD by ensuring the proper mental health care before it is too late. In this paper, we demonstrate a single-channel EEG-based MCI detection method, which is cost-effective and portable, and thus suitable for regular home-based patient monitoring. We collected the scalp EEG data from 23 subjects, while they were stimulated with five auditory speech signals. The cognitive state of the subjects was evaluated by the Montreal cognitive assessment test (MoCA). We extracted 590 features from the event-related potential (ERP) of the collected EEG signals, which included time and spectral domain characteristics of the response. The top 25 features, ranked by the random forest method, were used for classification models to identify subjects with MCI. Robustness of our model was tested using leave-one-out cross-validation while training the classifiers. Best results (leave-one-out cross-validation accuracy 87.9%, sensitivity 84.8%, specificity 95%, and F score 85%) were obtained using support vector machine (SVM) method with radial basis kernel (RBF) (sigma = 10/cost = 10 ). Similar performances were also observed with logistic regression (LR), further validating the results. Our results suggest that single-channel EEG could provide a robust biomarker for early detection of MCI.

摘要

轻度认知障碍 (MCI) 是痴呆症的早期阶段,可能导致老年人患阿尔茨海默病 (AD)。因此,早期发现 MCI 有可能通过在为时过晚之前确保适当的心理健康护理来最大限度地降低 AD 的风险。在本文中,我们展示了一种基于单通道 EEG 的 MCI 检测方法,该方法具有成本效益和便携性,因此适合定期进行家庭式患者监测。我们从 23 名受试者收集了头皮 EEG 数据,同时用五种听觉语音信号对他们进行了刺激。通过蒙特利尔认知评估测试 (MoCA) 评估了受试者的认知状态。我们从采集到的 EEG 信号的事件相关电位 (ERP) 中提取了 590 个特征,其中包括响应的时域和频域特征。使用随机森林方法对前 25 个特征进行排序,然后将其用于分类模型,以识别患有 MCI 的受试者。在使用分类器进行训练时,通过留一法交叉验证测试了我们模型的稳健性。使用具有径向基核 (RBF) 的支持向量机 (SVM) 方法 (sigma = 10/cost = 10) 获得了最佳结果 (留一法交叉验证准确率 87.9%、灵敏度 84.8%、特异性 95%和 F 分数 85%)。逻辑回归 (LR) 也观察到了类似的性能,进一步验证了结果。我们的结果表明,单通道 EEG 可以为早期发现 MCI 提供稳健的生物标志物。

相似文献

引用本文的文献

5
Study on cognitive impairment evaluation based on photoelectric neural information.基于光电神经信息的认知障碍评估研究
J Alzheimers Dis Rep. 2025 Mar 21;9:25424823251325537. doi: 10.1177/25424823251325537. eCollection 2025 Jan-Dec.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验