Suppr超能文献

基于脑电图的脑机接口方法,旨在为晚期肌萎缩侧索硬化症患者提供康复治疗。

EEG-based brain-computer interface methods with the aim of rehabilitating advanced stage ALS patients.

机构信息

Department of Biomedical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.

Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

出版信息

Disabil Rehabil Assist Technol. 2024 Nov;19(8):3183-3193. doi: 10.1080/17483107.2024.2316312. Epub 2024 Feb 24.

Abstract

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease that leads to progressive muscle weakness and paralysis, ultimately resulting in the loss of ability to communicate and control the environment. EEG-based Brain-Computer Interface (BCI) methods have shown promise in providing communication and control with the aim of rehabilitating ALS patients. In particular, P300-based BCI has been widely studied and used for ALS rehabilitation. Other EEG-based BCI methods, such as Motor Imagery (MI) based BCI and Hybrid BCI, have also shown promise in ALS rehabilitation. Nonetheless, EEG-based BCI methods hold great potential for improvement. This review article introduces and reviews FFT, WPD, CSP, CSSP, CSP, and GC feature extraction methods. The Common Spatial Pattern (CSP) is an efficient and common technique for extracting data properties used in BCI systems. In addition, Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), Neural Networks (NN), and Deep Learning (DL) classification methods were introduced and reviewed. SVM is the most appropriate classifier due to its insensitivity to the curse of dimensionality. Also, DL is used in the design of BCI systems and is a good choice for BCI systems based on motor imagery with big datasets. Despite the progress made in the field, there are still challenges to overcome, such as improving the accuracy and reliability of EEG signal detection and developing more intuitive and user-friendly interfaces By using BCI, disabled patients can communicate with their caregivers and control their environment using various devices, including wheelchairs, and robotic arms.

摘要

肌萎缩侧索硬化症(ALS)是一种神经退行性疾病,导致进行性肌肉无力和瘫痪,最终导致丧失沟通和控制环境的能力。基于脑电图的脑机接口(BCI)方法已显示出在为 ALS 患者提供康复方面的沟通和控制的希望。特别是,基于 P300 的 BCI 已被广泛研究和用于 ALS 康复。其他基于脑电图的 BCI 方法,如基于运动想象(MI)的 BCI 和混合 BCI,在 ALS 康复中也显示出了希望。尽管如此,基于脑电图的 BCI 方法仍有很大的改进空间。本文介绍并回顾了 FFT、WPD、CSP、CSSP、CSP 和 GC 特征提取方法。共空间模式(CSP)是一种用于提取 BCI 系统中使用的数据特性的有效且常用的技术。此外,还介绍并回顾了线性判别分析(LDA)、支持向量机(SVM)、神经网络(NN)和深度学习(DL)分类方法。由于对维度灾难的不敏感性,SVM 是最合适的分类器。此外,DL 用于 BCI 系统的设计,是基于大数据集的运动想象的 BCI 系统的不错选择。尽管在该领域取得了进展,但仍有一些挑战需要克服,例如提高 EEG 信号检测的准确性和可靠性,以及开发更直观和用户友好的界面。通过使用 BCI,残疾患者可以与他们的照顾者进行交流,并使用各种设备(包括轮椅和机械臂)控制他们的环境。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验