Suppr超能文献

使用生理信号的顺序转换模式特征工程技术开发的新型精确分类系统。

Novel accurate classification system developed using order transition pattern feature engineering technique with physiological signals.

作者信息

Gelen Mehmet Ali, Barua Prabal Datta, Tasci Irem, Tasci Gulay, Aydemir Emrah, Dogan Sengul, Tuncer Turker, Acharya U R

机构信息

Department of Cardiology, Elazig Fethi Sekin City Hospital, Elazig, Turkey.

School of Business (Information System), University of Southern Queensland, Toowoomba, Australia.

出版信息

Sci Rep. 2025 May 1;15(1):15278. doi: 10.1038/s41598-025-00071-w.

Abstract

This paper presents a novel, explainable feature engineering framework for classifying EEG and ECG signals with high accuracy. The proposed method employs the Order Transition Pattern (OTPat) feature extractor. The presented OTPat feature extractor captures both channel/column-based patterns (spatial features) using all channels for each point and signal/row-based patterns (temporal features) by extracting features from individual channels using overlapping blocks. The extracted features are then refined using cumulative weighted iterative neighborhood component analysis (CWINCA) for feature selection and classified with a t‑algorithm k‑nearest neighbors (tkNN) classifier. Finally, two symbolic languages, Directed Lobish (DLob) and Cardioish, generate interpretable results in the form of cortical and cardiac connectome diagrams. The OTPat-based XFE model achieves over 95% accuracy on several EEG and ECG datasets and reaches 86.07% accuracy on an 8‑class EEG artifact dataset. These results demonstrate high performance and clear interpretability, highlighting the model's potential for robust biomedical signal classification.

摘要

本文提出了一种新颖的、可解释的特征工程框架,用于高精度地对脑电图(EEG)和心电图(ECG)信号进行分类。所提出的方法采用了顺序转换模式(OTPat)特征提取器。所呈现的OTPat特征提取器通过对每个点使用所有通道来捕获基于通道/列的模式(空间特征),并通过使用重叠块从各个通道提取特征来捕获基于信号/行的模式(时间特征)。然后,使用累积加权迭代邻域成分分析(CWINCA)对提取的特征进行细化以进行特征选择,并使用t算法k近邻(tkNN)分类器进行分类。最后,两种符号语言,即定向洛比什语(DLob)和心脏语,以皮质和心脏连接组图的形式生成可解释的结果。基于OTPat的XFE模型在多个EEG和ECG数据集上实现了超过95%的准确率,在一个8类EEG伪迹数据集上达到了86.07%的准确率。这些结果证明了其高性能和清晰的可解释性,突出了该模型在稳健生物医学信号分类方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41bd/12045993/a6189bad2781/41598_2025_71_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验