Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia.
Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia.
Biosystems. 2024 Mar;237:105164. doi: 10.1016/j.biosystems.2024.105164. Epub 2024 Feb 23.
Artificial neural networks, inspired by the biological networks of the human brain, have become game-changing computing models in modern computer science. Inspired by their wide scope of applications, synthetic biology strives to create their biological counterparts, which we denote synthetic biological neural networks (SYNBIONNs). Their use in the fields of medicine, biosensors, biotechnology, and many more shows great potential and presents exciting possibilities. So far, many different synthetic biological networks have been successfully constructed, however, SYNBIONN implementations have been sparse. The latter are mostly based on neural networks pretrained in silico and being heavily dependent on extensive human input. In this paper, we review current implementations and models of SYNBIONNs. We briefly present the biological platforms that show potential for designing and constructing perceptrons and/or multilayer SYNBIONNs. We explore their future possibilities along with the challenges that must be overcome to successfully implement a scalable in vivo biological neural network capable of online learning.
人工神经网络受人类大脑生物网络的启发,已经成为现代计算机科学中改变游戏规则的计算模型。受其广泛应用的启发,合成生物学努力创造出它们的生物对应物,我们称之为合成生物神经网络(SYNBIONNs)。它们在医学、生物传感器、生物技术等领域的应用显示出巨大的潜力和令人兴奋的可能性。到目前为止,已经成功构建了许多不同的合成生物网络,然而,SYNBIONN 的实现却很少。后者大多基于在计算机中进行预训练的神经网络,并且严重依赖于大量的人工输入。在本文中,我们回顾了 SYNBIONN 的当前实现和模型。我们简要介绍了具有设计和构建感知器和/或多层 SYNBIONN 潜力的生物平台。我们探讨了它们的未来可能性,以及为了成功实现能够在线学习的可扩展体内生物神经网络而必须克服的挑战。