Suppr超能文献

[经颅电磁神经调节脑仿真体模的研究]

[Research on the brain phantom for transcranial electromagnetic neuromodulation].

作者信息

Wu Zhen, Wu Nianshuang, Zhang Cheng, Wu Changzhe, Huo Xiaolin, Zhang Guanghao

机构信息

Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.

School of Electronics, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2024 Feb 25;41(1):98-104. doi: 10.7507/1001-5515.202311056.

Abstract

Transcranial magnetic stimulation (TMS), a widely used neuroregulatory technique, has been proven to be effective in treating neurological and psychiatric disorders. The therapeutic effect is closely related to the intracranial electric field caused by TMS, thus accurate measurement of the intracranial electric field generated by TMS is of great significance. However, direct intracranial measurement in human brain faces various technical, safety, ethical and other limitations. Therefore, we have constructed a brain phantom that can simulate the electrical conductivity and anatomical structure of the real brain, in order to replace the clinical trial to achieve intracranial electric field measurement. We selected and prepared suitable conductive materials based on the electrical conductivity of various layers of the real brain tissue, and performed image segmentation, three-dimensional reconstruction and three-dimensional printing processes on each layer of tissue based on magnetic resonance images. The production of each layer of tissue in the brain phantom was completed, and each layer of tissue was combined to form a complete brain phantom. The induced electric field generated by the TMS coil applied to the brain phantom was measured to further verify the conductivity of the brain phantom. Our study provides an effective experimental tool for studying the distribution of intracranial electric fields caused by TMS.

摘要

经颅磁刺激(TMS)是一种广泛应用的神经调节技术,已被证明在治疗神经和精神疾病方面有效。其治疗效果与TMS所引起的颅内电场密切相关,因此准确测量TMS产生的颅内电场具有重要意义。然而,在人脑内进行直接测量面临各种技术、安全、伦理等方面的限制。因此,我们构建了一个能够模拟真实大脑电导率和解剖结构的脑模型,以替代临床试验来实现颅内电场测量。我们根据真实脑组织各层的电导率选择并制备了合适的导电材料,并基于磁共振图像对每层组织进行图像分割、三维重建和三维打印过程。脑模型中每层组织的制作完成后,将各层组织组合形成一个完整的脑模型。测量施加于脑模型上的TMS线圈所产生的感应电场,以进一步验证脑模型的电导率。我们的研究为研究TMS引起的颅内电场分布提供了一种有效的实验工具。

相似文献

1
[Research on the brain phantom for transcranial electromagnetic neuromodulation].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2024 Feb 25;41(1):98-104. doi: 10.7507/1001-5515.202311056.
2
Real-time estimation of electric fields induced by transcranial magnetic stimulation with deep neural networks.
Brain Stimul. 2019 Nov-Dec;12(6):1500-1507. doi: 10.1016/j.brs.2019.06.015. Epub 2019 Jun 17.
3
Development of anatomically accurate brain phantom for experimental validation of stimulation strengths during TMS.
Mater Sci Eng C Mater Biol Appl. 2021 Jan;120:111705. doi: 10.1016/j.msec.2020.111705. Epub 2020 Nov 7.
4
A principled approach to conductivity uncertainty analysis in electric field calculations.
Neuroimage. 2019 Mar;188:821-834. doi: 10.1016/j.neuroimage.2018.12.053. Epub 2018 Dec 27.
6
The effect of head and coil modeling for the calculation of induced electric field during transcranial magnetic stimulation.
Int J Psychophysiol. 2014 Jul;93(1):167-71. doi: 10.1016/j.ijpsycho.2013.07.004. Epub 2013 Jul 18.
8
A high-resolution computational localization method for transcranial magnetic stimulation mapping.
Neuroimage. 2018 May 15;172:85-93. doi: 10.1016/j.neuroimage.2018.01.039. Epub 2018 Jan 28.
9
Accurate and robust whole-head segmentation from magnetic resonance images for individualized head modeling.
Neuroimage. 2020 Oct 1;219:117044. doi: 10.1016/j.neuroimage.2020.117044. Epub 2020 Jun 11.

本文引用的文献

1
Precuneus magnetic stimulation for Alzheimer's disease: a randomized, sham-controlled trial.
Brain. 2022 Nov 21;145(11):3776-3786. doi: 10.1093/brain/awac285.
2
Normal component of TMS-induced electric field is correlated with depressive symptom relief in treatment-resistant depression.
Brain Stimul. 2022 Sep-Oct;15(5):1318-1320. doi: 10.1016/j.brs.2022.09.006. Epub 2022 Sep 18.
4
Transcranial Electrical Stimulation generates electric fields in deep human brain structures.
Brain Stimul. 2022 Jan-Feb;15(1):1-12. doi: 10.1016/j.brs.2021.11.001. Epub 2021 Nov 4.
5
Development of anatomically accurate brain phantom for experimental validation of stimulation strengths during TMS.
Mater Sci Eng C Mater Biol Appl. 2021 Jan;120:111705. doi: 10.1016/j.msec.2020.111705. Epub 2020 Nov 7.
6
Fast computational optimization of TMS coil placement for individualized electric field targeting.
Neuroimage. 2021 Mar;228:117696. doi: 10.1016/j.neuroimage.2020.117696. Epub 2020 Dec 30.
7
A novel approach to localize cortical TMS effects.
Neuroimage. 2020 Apr 1;209:116486. doi: 10.1016/j.neuroimage.2019.116486. Epub 2019 Dec 23.
8
Electric field measurement of two commercial active/sham coils for transcranial magnetic stimulation.
J Neural Eng. 2018 Oct;15(5):054001. doi: 10.1088/1741-2552/aace89. Epub 2018 Jun 22.
10
Novel Electrically Conductive Porous PDMS/Carbon Nanofiber Composites for Deformable Strain Sensors and Conductors.
ACS Appl Mater Interfaces. 2017 Apr 26;9(16):14207-14215. doi: 10.1021/acsami.7b00847. Epub 2017 Apr 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验