Suppr超能文献

用于机械手逆动力学模型学习的速度感知时空注意力长短期记忆模型

Velocity-aware spatial-temporal attention LSTM model for inverse dynamic model learning of manipulators.

作者信息

Huang Wenhui, Lin Yunhan, Liu Mingxin, Min Huasong

机构信息

Institute of Robotics and Intelligent Systems, Wuhan University of Science and Technology, Wuhan, Hubei, China.

出版信息

Front Neurorobot. 2024 Feb 9;18:1353879. doi: 10.3389/fnbot.2024.1353879. eCollection 2024.

Abstract

INTRODUCTION

An accurate inverse dynamics model of manipulators can be effectively learned using neural networks. However, further research is required to investigate the impact of spatiotemporal variations in manipulator motion sequences on network learning. In this work, the Velocity Aware Spatial-Temporal Attention Residual LSTM neural network (VA-STA-ResLSTM) is proposed to learn a more accurate inverse dynamics model, which uses a velocity-aware spatial-temporal attention mechanism to extract dynamic spatiotemporal features selectively from the motion sequence of the serial manipulator.

METHODS

The multi-layer perception (MLP) attention mechanism is adopted to capture the correlation between joint position and velocity in the motion sequence, and the state correlation between hidden units in the LSTM network to reduce the weight of invalid features. A velocity-aware state fusion approach of LSTM network hidden units' states is proposed, which utilizes variation in joint velocity to adapt to the temporal characteristics of the manipulator dynamic motion, improving the generalization and accuracy of the neural network.

RESULTS

Comparative experiments have been conducted on two open datasets and a self-built dataset. Specifically, the proposed method achieved an average accuracy improvement of 61.88% and 43.93% on the two different open datasets and 71.13% on the self-built dataset compared to the LSTM network. These results demonstrate a significant advancement in accuracy for the proposed method.

DISCUSSION

Compared with the state-of-the-art inverse dynamics model learning methods of manipulators, the modeling accuracy of the proposed method in this paper is higher by an average of 10%. Finally, by visualizing attention weights to explain the training procedure, it was found that dynamic modeling only relies on partial features, which is meaningful for future optimization of inverse dynamic model learning methods.

摘要

引言

利用神经网络可以有效地学习精确的机械手逆动力学模型。然而,需要进一步研究来探讨机械手运动序列中的时空变化对网络学习的影响。在这项工作中,提出了速度感知时空注意力残差长短期记忆神经网络(VA-STA-ResLSTM)来学习更精确的逆动力学模型,该模型使用速度感知时空注意力机制从串联机械手的运动序列中选择性地提取动态时空特征。

方法

采用多层感知器(MLP)注意力机制来捕捉运动序列中关节位置与速度之间的相关性,以及长短期记忆网络中隐藏单元之间的状态相关性,以减少无效特征的权重。提出了一种长短期记忆网络隐藏单元状态的速度感知状态融合方法,该方法利用关节速度的变化来适应机械手动态运动的时间特性,提高神经网络的泛化能力和准确性。

结果

在两个公开数据集和一个自建数据集上进行了对比实验。具体而言,与长短期记忆网络相比,所提出的方法在两个不同的公开数据集上平均准确率提高了61.88%和43.93%,在自建数据集上提高了71.13%。这些结果表明所提出的方法在准确率方面有显著提高。

讨论

与现有最先进的机械手逆动力学模型学习方法相比,本文所提出方法的建模准确率平均提高了10%。最后,通过可视化注意力权重来解释训练过程,发现动态建模仅依赖于部分特征,这对未来逆动力学模型学习方法的优化具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7590/10884174/5e9ab609f2c3/fnbot-18-1353879-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验