State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China.
Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education & Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, P. R. China.
Angew Chem Int Ed Engl. 2024 Apr 15;63(16):e202400599. doi: 10.1002/anie.202400599. Epub 2024 Mar 14.
Proteins capable of switching between distinct active states in response to biochemical cues are ideal for sensing and controlling biological processes. Activatable CRISPR-Cas systems are significant in precise genetic manipulation and sensitive molecular diagnostics, yet directly controlling Cas protein function remains challenging. Herein, we explore anti-CRISPR (Acr) proteins as modules to create synthetic Cas protein switches (CasPSs) based on computational chemistry-directed rational protein interface engineering. Guided by molecular fingerprint analysis, electrostatic potential mapping, and binding free energy calculations, we rationally engineer the molecular interaction interface between Cas12a and its cognate Acr proteins (AcrVA4 and AcrVA5) to generate a series of orthogonal protease-responsive CasPSs. These CasPSs enable the conversion of specific proteolytic events into activation of Cas12a function with high switching ratios (up to 34.3-fold). These advancements enable specific proteolysis-inducible genome editing in mammalian cells and sensitive detection of viral protease activities during virus infection. This work provides a promising strategy for developing CRISPR-Cas tools for controllable gene manipulation and regulation and clinical diagnostics.
能够根据生化线索在不同活性状态之间切换的蛋白质是感应和控制生物过程的理想选择。可激活的 CRISPR-Cas 系统在精确的基因操作和敏感的分子诊断方面意义重大,但直接控制 Cas 蛋白功能仍然具有挑战性。在这里,我们探索了反 CRISPR(Acr)蛋白作为模块,基于计算化学指导的合理蛋白质界面工程,创建了合成 Cas 蛋白开关(CasPS)。通过分子指纹分析、静电势映射和结合自由能计算的指导,我们对 Cas12a 与其同源 Acr 蛋白(AcrVA4 和 AcrVA5)之间的分子相互作用界面进行了合理的工程设计,生成了一系列正交蛋白酶响应的 CasPS。这些 CasPS 能够将特定的蛋白水解事件转化为 Cas12a 功能的激活,具有较高的转换比(高达 34.3 倍)。这些进展使得在哺乳动物细胞中进行特定的蛋白水解诱导的基因组编辑和在病毒感染过程中敏感地检测病毒蛋白酶活性成为可能。这项工作为开发用于可控基因操作和调控以及临床诊断的 CRISPR-Cas 工具提供了一个有前途的策略。