Department of Cognitive Science, Johns Hopkins University, Baltimore, Maryland, United States of America.
PLoS Comput Biol. 2024 Feb 26;20(2):e1011887. doi: 10.1371/journal.pcbi.1011887. eCollection 2024 Feb.
Despite decades of research, much is still unknown about the computations carried out in the human face processing network. Recently, deep networks have been proposed as a computational account of human visual processing, but while they provide a good match to neural data throughout visual cortex, they lack interpretability. We introduce a method for interpreting brain activity using a new class of deep generative models, disentangled representation learning models, which learn a low-dimensional latent space that "disentangles" different semantically meaningful dimensions of faces, such as rotation, lighting, or hairstyle, in an unsupervised manner by enforcing statistical independence between dimensions. We find that the majority of our model's learned latent dimensions are interpretable by human raters. Further, these latent dimensions serve as a good encoding model for human fMRI data. We next investigate the representation of different latent dimensions across face-selective voxels. We find that low- and high-level face features are represented in posterior and anterior face-selective regions, respectively, corroborating prior models of human face recognition. Interestingly, though, we find identity-relevant and irrelevant face features across the face processing network. Finally, we provide new insight into the few "entangled" (uninterpretable) dimensions in our model by showing that they match responses in the ventral stream and carry information about facial identity. Disentangled face encoding models provide an exciting alternative to standard "black box" deep learning approaches for modeling and interpreting human brain data.
尽管已经进行了几十年的研究,但人类面部处理网络所进行的计算仍有许多未知之处。最近,深度网络被提出作为人类视觉处理的计算模型,但尽管它们与整个视觉皮层的神经数据非常匹配,但它们缺乏可解释性。我们引入了一种使用新的深度生成模型类——解缠表示学习模型来解释大脑活动的方法,该模型通过强制维度之间的统计独立性,以无监督的方式学习一个低维潜在空间,该潜在空间“解缠”了面部的不同语义有意义的维度,例如旋转、光照或发型。我们发现,我们模型的大多数学习到的潜在维度都可以被人类评分者解释。此外,这些潜在维度可以作为人类 fMRI 数据的良好编码模型。接下来,我们研究了不同潜在维度在面部选择性体素中的表示。我们发现,低水平和高水平的面部特征分别在后部和前部面部选择性区域中得到表示,这与人类面部识别的先前模型相符。有趣的是,尽管我们在面部处理网络中发现了与身份相关和不相关的面部特征。最后,我们通过展示它们与腹侧流的反应相匹配并携带有关面部身份的信息,为我们模型中少数“纠缠”(不可解释)的维度提供了新的见解。解缠的面部编码模型为建模和解释人类大脑数据提供了一种令人兴奋的替代标准“黑盒”深度学习方法。