Suppr超能文献

利用电子健康记录促进精准精神病学。

Using Electronic Health Records to Facilitate Precision Psychiatry.

机构信息

Department of Psychiatry, University of Oxford, Oxford, United Kingdom; NIHR Oxford Health Biomedical Research Centre, Oxford, United Kingdom; OPEN Early Detection Service, Oxford Health NHS Foundation Trust, Oxford, United Kingdom; Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.

Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.

出版信息

Biol Psychiatry. 2024 Oct 1;96(7):532-542. doi: 10.1016/j.biopsych.2024.02.1006. Epub 2024 Feb 24.

Abstract

The use of clinical prediction models to produce individualized risk estimates can facilitate the implementation of precision psychiatry. As a source of data from large, clinically representative patient samples, electronic health records (EHRs) provide a platform to develop and validate clinical prediction models, as well as potentially implement them in routine clinical care. The current review describes promising use cases for the application of precision psychiatry to EHR data and considers their performance in terms of discrimination (ability to separate individuals with and without the outcome) and calibration (extent to which predicted risk estimates correspond to observed outcomes), as well as their potential clinical utility (weighing benefits and costs associated with the model compared to different approaches across different assumptions of the number needed to test). We review 4 externally validated clinical prediction models designed to predict psychosis onset, psychotic relapse, cardiometabolic morbidity, and suicide risk. We then discuss the prospects for clinically implementing these models and the potential added value of integrating data from evidence syntheses, standardized psychometric assessments, and biological data into EHRs. Clinical prediction models can utilize routinely collected EHR data in an innovative way, representing a unique opportunity to inform real-world clinical decision making. Combining data from other sources (e.g., meta-analyses) or enhancing EHR data with information from research studies (clinical and biomarker data) may enhance our abilities to improve the performance of clinical prediction models.

摘要

临床预测模型在个体化风险评估中的应用有助于实现精准精神病学。电子健康记录(EHRs)作为来自大型、具有代表性的临床患者样本的数据来源,为开发和验证临床预测模型提供了平台,并有可能将其应用于常规临床护理。本综述描述了将精准精神病学应用于 EHR 数据的有前景的用例,并考虑了它们在区分(区分有和无结果的个体的能力)和校准(预测风险估计与观察结果的吻合程度)方面的性能,以及它们的潜在临床实用性(权衡与不同假设下的不同方法相比,与模型相关的收益和成本,以测试的人数为准)。我们回顾了 4 种经过外部验证的旨在预测精神病发作、精神病复发、心血管代谢发病率和自杀风险的临床预测模型。然后,我们讨论了在临床上实施这些模型的前景,以及将来自证据综合、标准化心理测量评估和生物数据的信息整合到 EHRs 中的潜在附加值。临床预测模型可以以创新的方式利用常规收集的 EHR 数据,这是为现实世界中的临床决策提供信息的独特机会。结合来自其他来源(例如荟萃分析)的数据,或利用研究数据(临床和生物标志物数据)增强 EHR 数据,可以提高我们改善临床预测模型性能的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验