Suppr超能文献

意大利新冠疫情下匿名移动数据的质量评估和社区检测方法。

Quality assessment and community detection methods for anonymized mobility data in the Italian Covid context.

机构信息

University of Trento, via Sommarive 14, 38123, Trento, Italy.

INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, 38123, Trento, Italy.

出版信息

Sci Rep. 2024 Feb 26;14(1):4636. doi: 10.1038/s41598-024-54878-0.

Abstract

We discuss how to assess the reliability of partial, anonymized mobility data and compare two different methods to identify spatial communities based on movements: Greedy Modularity Clustering (GMC) and the novel Critical Variable Selection (CVS). These capture different aspects of mobility: direct population fluxes (GMC) and the probability for individuals to move between two nodes (CVS). As a test case, we consider movements of Italians before and during the SARS-Cov2 pandemic, using Facebook users' data and publicly available information from the Italian National Institute of Statistics (Istat) to construct daily mobility networks at the interprovincial level. Using the Perron-Frobenius (PF) theorem, we show how the mean stochastic network has a stationary population density state comparable with data from Istat, and how this ceases to be the case if even a moderate amount of pruning is applied to the network. We then identify the first two national lockdowns through temporal clustering of the mobility networks, define two representative graphs for the lockdown and non-lockdown conditions and perform optimal spatial community identification on both graphs using the GMC and CVS approaches. Despite the fundamental differences in the methods, the variation of information (VI) between them assesses that they return similar partitions of the Italian provincial networks in both situations. The information provided can be used to inform policy, for example, to define an optimal scale for lockdown measures. Our approach is general and can be applied to other countries or geographical scales.

摘要

我们讨论了如何评估部分匿名移动数据的可靠性,并比较了两种基于运动识别空间社区的不同方法:贪婪模块化聚类(GMC)和新的关键变量选择(CVS)。这些方法捕捉了移动性的不同方面:直接人口通量(GMC)和个体在两个节点之间移动的概率(CVS)。作为一个测试案例,我们考虑了意大利人在 SARS-CoV2 大流行前后的移动情况,使用 Facebook 用户的数据和意大利国家统计局(ISTAT)提供的公开信息,构建了省级层面的每日移动网络。利用佩龙-弗罗贝尼乌斯(PF)定理,我们展示了平均随机网络如何具有与 ISTAT 数据可比的稳定人口密度状态,如果对网络进行适度的修剪,这种状态就会停止。然后,我们通过移动网络的时间聚类来识别前两次全国封锁,并为封锁和非封锁条件定义两个有代表性的图形,并使用 GMC 和 CVS 方法对两个图形进行最佳空间社区识别。尽管方法存在根本差异,但它们之间的信息差异(VI)评估表明,它们在两种情况下都返回了意大利省级网络相似的分区。所提供的信息可用于为政策提供信息,例如,定义封锁措施的最佳规模。我们的方法具有通用性,可以应用于其他国家或地理尺度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cd1/10897296/bafc18eb2186/41598_2024_54878_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验