Psychological Methods, University of Amsterdam, Amsterdam, The Netherlands.
Department of Psychology, University of California, Los Angeles, CA, USA.
Behav Res Methods. 2024 Sep;56(6):6020-6050. doi: 10.3758/s13428-023-02331-x. Epub 2024 Feb 26.
We present motivation and practical steps necessary to find parameter estimates of joint models of behavior and neural electrophysiological data. This tutorial is written for researchers wishing to build joint models of human behavior and scalp and intracranial electroencephalographic (EEG) or magnetoencephalographic (MEG) data, and more specifically those researchers who seek to understand human cognition. Although these techniques could easily be applied to animal models, the focus of this tutorial is on human participants. Joint modeling of M/EEG and behavior requires some knowledge of existing computational and cognitive theories, M/EEG artifact correction, M/EEG analysis techniques, cognitive modeling, and programming for statistical modeling implementation. This paper seeks to give an introduction to these techniques as they apply to estimating parameters from neurocognitive models of M/EEG and human behavior, and to evaluate model results and compare models. Due to our research and knowledge on the subject matter, our examples in this paper will focus on testing specific hypotheses in human decision-making theory. However, most of the motivation and discussion of this paper applies across many modeling procedures and applications. We provide Python (and linked R) code examples in the tutorial and appendix. Readers are encouraged to try the exercises at the end of the document.
我们介绍了从行为和神经电生理数据联合模型中找到参数估计值所需的动机和实际步骤。本教程面向希望构建人类行为与头皮和颅内脑电图(EEG)或脑磁图(MEG)数据联合模型的研究人员编写,特别是那些希望了解人类认知的研究人员。尽管这些技术可以轻松应用于动物模型,但本教程的重点是人类参与者。M/EEG 和行为的联合建模需要一些关于现有计算和认知理论、M/EEG 伪影校正、M/EEG 分析技术、认知建模和用于统计建模实现的编程的知识。本文旨在介绍这些技术,因为它们适用于从 M/EEG 和人类行为的神经认知模型中估计参数,并评估模型结果和比较模型。由于我们在该主题上的研究和知识,我们在本文中的示例将集中在测试人类决策理论中的特定假设上。然而,本文的大部分动机和讨论都适用于许多建模过程和应用。我们在教程和附录中提供了 Python(和链接的 R)代码示例。鼓励读者尝试文档末尾的练习。