Suppr超能文献

通过铂、磷掺杂镍钼注入二氧化钛进行相电子结构调控用于高效水分解和镁/海水电池

Phase Electronic Structure Tuning via Pt, P-Doped NiMo-Implanted TiO for Highly Efficient Water Splitting and Mg/Seawater Batteries.

作者信息

Hoa Van Hien, Prabhakaran Sampath, Mai Mai, Dao Huyen Thi, Kim Do Hwan

机构信息

Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea.

Division of Science Education, Graduate School of Department of Energy Storage/Conversion Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea.

出版信息

Small. 2024 Jul;20(30):e2310666. doi: 10.1002/smll.202310666. Epub 2024 Feb 26.

Abstract

Fine-tuning nanoscale structures, morphologies, and electronic states are crucial for creating efficient water-splitting electrocatalysts. In this study, a method for electronic structure engineering to enhance overall water splitting in a corrosion-resistant electrocatalyst matrix by integrating Pt, P dual-doped NiMo electrocatalysts onto a TiO nanorod grown on carbon cloth (Pt, P-NiMo-TiO/CC) is introduced. By optimizing platinum and phosphorus concentrations to 1.18% and 2.42%, respectively, low overpotentials are achieved remarkably: 24 mV at 10 mA cm for the hydrogen evolution reaction and 290 mV at 20 mA cm for the oxygen evolution reaction in 1.0 m KOH. These values approach or surpass those of benchmark Pt-C and IrO catalysts. Additionally, the Pt, P-NiMo-TiO/CC bifunctional electrocatalyst displays low cell potentials across various mediums, maintaining excellent current retention (96% stability after 40 h in mimic seawater at 20 mA cm) and demonstrating strong corrosion resistance and suitability for seawater  electrolysis. As a cathode in magnesium/seawater batteries, it achieves a power density of 7.2 mW cm and maintains stability for 100 h. Density functional theory simulations confirm that P, Pt doping-assisted electronic structure modifications augment electrical conductivity and active sites in the hybrid electrocatalysts.

摘要

微调纳米级结构、形态和电子态对于制备高效的水分解电催化剂至关重要。在本研究中,介绍了一种电子结构工程方法,通过将Pt、P双掺杂的NiMo电催化剂整合到生长在碳布上的TiO纳米棒上(Pt,P-NiMo-TiO/CC),以增强耐腐蚀电催化剂基质中的整体水分解。通过将铂和磷的浓度分别优化至1.18%和2.42%,显著实现了低过电位:在1.0 m KOH中,析氢反应在10 mA cm时为24 mV,析氧反应在20 mA cm时为290 mV。这些值接近或超过了基准Pt-C和IrO催化剂的值。此外,Pt,P-NiMo-TiO/CC双功能电催化剂在各种介质中均表现出低电池电位,保持了优异的电流保持率(在模拟海水中20 mA cm下40 h后稳定性为96%),并显示出强耐腐蚀性和适用于海水电解。作为镁/海水电池的阴极,它实现了7.2 mW cm的功率密度,并保持100 h的稳定性。密度泛函理论模拟证实,P、Pt掺杂辅助的电子结构修饰增强了混合电催化剂的电导率和活性位点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验