Tapia-Rojo Rafael, Alonso-Caballero Alvaro, Badilla Carmen L, Fernandez Julio M
Department of Biological Sciences, Columbia University, New York, New York.
Department of Biological Sciences, Columbia University, New York, New York.
Biophys J. 2024 Apr 2;123(7):814-823. doi: 10.1016/j.bpj.2024.02.020. Epub 2024 Feb 28.
The classical "one sequence, one structure, one function" paradigm has shaped much of our intuition of how proteins work inside the cell. Partially due to the insight provided by bulk biochemical assays, individual biomolecules are often assumed to behave as identical entities, and their characterization relies on ensemble averages that flatten any conformational diversity into a unique phenotype. While the emergence of single-molecule techniques opened the gates to interrogating individual molecules, technical shortcomings typically limit the duration of these measurements, which precludes a complete characterization of an individual protein and, hence, capturing the heterogeneity among molecular populations. Here, we introduce an ultrastable magnetic tweezers design, which enables us to measure the folding dynamics of a single protein during several uninterrupted days with high temporal and spatial resolution. Thanks to this instrumental development, we fully characterize the nanomechanics of two proteins with a very distinct force response, the talin R3 domain and protein L. Days-long recordings on the same protein individual accumulate thousands of folding transitions with submicrosecond resolution, allowing us to reconstruct their free energy landscapes and describe how they evolve with force. By mapping the nanomechanical identity of many different protein individuals, we directly capture their molecular diversity as a quantifiable dispersion on their force response and folding kinetics. By significantly expanding the measurable timescales, our instrumental development offers a tool for profiling individual molecules, opening the gates to directly characterizing biomolecular heterogeneity.
经典的“一个序列,一种结构,一种功能”范式塑造了我们对蛋白质在细胞内如何发挥作用的许多直觉。部分由于大量生化分析所提供的见解,单个生物分子通常被假定为表现相同的实体,其表征依赖于总体平均值,这种平均值将任何构象多样性简化为单一表型。虽然单分子技术的出现为研究单个分子打开了大门,但技术缺陷通常限制了这些测量的持续时间,这排除了对单个蛋白质的完整表征,因此也无法捕捉分子群体之间的异质性。在这里,我们介绍一种超稳定的磁镊设计,它使我们能够以高时间和空间分辨率在几天不间断的时间内测量单个蛋白质的折叠动力学。由于这一仪器的发展,我们全面表征了两种具有非常不同力响应的蛋白质——踝蛋白R3结构域和蛋白L的纳米力学特性。对同一蛋白质个体进行长达数天的记录,以亚微秒分辨率积累了数千次折叠转变,使我们能够重建它们的自由能景观,并描述它们如何随力而演变。通过绘制许多不同蛋白质个体的纳米力学特性,我们直接捕捉到它们的分子多样性,将其作为力响应和折叠动力学上可量化的离散度。通过显著扩展可测量的时间尺度,我们的仪器发展提供了一种对单个分子进行分析的工具,为直接表征生物分子异质性打开了大门。