Suppr超能文献

相同的序列,不同的行为:单分子水平上捕捉到的蛋白质多样性

Identical sequences, different behaviors: Protein diversity captured at the single-molecule level.

作者信息

Tapia-Rojo Rafael, Alonso-Caballero Alvaro, Badilla Carmen L, Fernandez Julio M

机构信息

Department of Biological Sciences, Columbia University, New York, New York.

Department of Biological Sciences, Columbia University, New York, New York.

出版信息

Biophys J. 2024 Apr 2;123(7):814-823. doi: 10.1016/j.bpj.2024.02.020. Epub 2024 Feb 28.

Abstract

The classical "one sequence, one structure, one function" paradigm has shaped much of our intuition of how proteins work inside the cell. Partially due to the insight provided by bulk biochemical assays, individual biomolecules are often assumed to behave as identical entities, and their characterization relies on ensemble averages that flatten any conformational diversity into a unique phenotype. While the emergence of single-molecule techniques opened the gates to interrogating individual molecules, technical shortcomings typically limit the duration of these measurements, which precludes a complete characterization of an individual protein and, hence, capturing the heterogeneity among molecular populations. Here, we introduce an ultrastable magnetic tweezers design, which enables us to measure the folding dynamics of a single protein during several uninterrupted days with high temporal and spatial resolution. Thanks to this instrumental development, we fully characterize the nanomechanics of two proteins with a very distinct force response, the talin R3 domain and protein L. Days-long recordings on the same protein individual accumulate thousands of folding transitions with submicrosecond resolution, allowing us to reconstruct their free energy landscapes and describe how they evolve with force. By mapping the nanomechanical identity of many different protein individuals, we directly capture their molecular diversity as a quantifiable dispersion on their force response and folding kinetics. By significantly expanding the measurable timescales, our instrumental development offers a tool for profiling individual molecules, opening the gates to directly characterizing biomolecular heterogeneity.

摘要

经典的“一个序列,一种结构,一种功能”范式塑造了我们对蛋白质在细胞内如何发挥作用的许多直觉。部分由于大量生化分析所提供的见解,单个生物分子通常被假定为表现相同的实体,其表征依赖于总体平均值,这种平均值将任何构象多样性简化为单一表型。虽然单分子技术的出现为研究单个分子打开了大门,但技术缺陷通常限制了这些测量的持续时间,这排除了对单个蛋白质的完整表征,因此也无法捕捉分子群体之间的异质性。在这里,我们介绍一种超稳定的磁镊设计,它使我们能够以高时间和空间分辨率在几天不间断的时间内测量单个蛋白质的折叠动力学。由于这一仪器的发展,我们全面表征了两种具有非常不同力响应的蛋白质——踝蛋白R3结构域和蛋白L的纳米力学特性。对同一蛋白质个体进行长达数天的记录,以亚微秒分辨率积累了数千次折叠转变,使我们能够重建它们的自由能景观,并描述它们如何随力而演变。通过绘制许多不同蛋白质个体的纳米力学特性,我们直接捕捉到它们的分子多样性,将其作为力响应和折叠动力学上可量化的离散度。通过显著扩展可测量的时间尺度,我们的仪器发展提供了一种对单个分子进行分析的工具,为直接表征生物分子异质性打开了大门。

相似文献

6
Exploring the free energy landscape of proteins using magnetic tweezers.利用磁镊技术探索蛋白质的自由能景观。
Methods Enzymol. 2024;694:237-261. doi: 10.1016/bs.mie.2023.12.008. Epub 2024 Jan 5.
9
The nanomechanics of individual proteins.单个蛋白质的纳力学。
Chem Soc Rev. 2020 Oct 7;49(19):6816-6832. doi: 10.1039/d0cs00426j. Epub 2020 Sep 15.
10
Single-Molecule Studies of Protein Folding with Optical Tweezers.用光学镊子进行蛋白质折叠的单分子研究。
Annu Rev Biochem. 2020 Jun 20;89:443-470. doi: 10.1146/annurev-biochem-013118-111442.

本文引用的文献

3
Molecular Fluctuations as a Ruler of Force-Induced Protein Conformations.分子涨落作为力致蛋白质构象的标尺。
Nano Lett. 2021 Apr 14;21(7):2953-2961. doi: 10.1021/acs.nanolett.1c00051. Epub 2021 Mar 25.
4
The nanomechanics of individual proteins.单个蛋白质的纳力学。
Chem Soc Rev. 2020 Oct 7;49(19):6816-6832. doi: 10.1039/d0cs00426j. Epub 2020 Sep 15.
5
Talin folding as the tuning fork of cellular mechanotransduction.肌动蛋白折叠作为细胞力学转导的音叉。
Proc Natl Acad Sci U S A. 2020 Sep 1;117(35):21346-21353. doi: 10.1073/pnas.2004091117. Epub 2020 Aug 17.
7
Single-Molecule Studies of Protein Folding with Optical Tweezers.用光学镊子进行蛋白质折叠的单分子研究。
Annu Rev Biochem. 2020 Jun 20;89:443-470. doi: 10.1146/annurev-biochem-013118-111442.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验