Suppr超能文献

机械力和配体结合可调节PilY1机械敏感蛋白。

Mechanical forces and ligand binding modulate PilY1 mechanosensitive protein.

作者信息

Cao-Garcia Francisco J, Walker Jane E, Board Stephanie, Alonso-Caballero Alvaro

机构信息

Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Madrid, Spain.

IMDEA Nanociencia, Madrid, Spain.

出版信息

Life Sci Alliance. 2025 Mar 7;8(5). doi: 10.26508/lsa.202403111. Print 2025 May.

Abstract

Surface sensing initiates bacterial colonization of substrates. The protein PilY1 plays key roles during this process-surface detection, host adhesion, and motility-while experiencing mechanical perturbations of varying magnitudes. In , the adhesion and motility functions of PilY1 are associated with integrin and calcium ligand-binding sites; however, how mechanical forces influence PilY1's dynamics and its interactions with these ligands remain unknown. Here, using single-molecule magnetic tweezers, we reveal that PilY1 is a mechanosensor protein that exhibits different behaviors depending on the force load. At high forces (>20 pN), PilY1 unfolds through a hierarchical sequence of intermediates, whose mechanical stability increases with calcium binding. This enhanced stability may help counteract type IV pilus retraction forces during motility. At low forces (<7 pN), we identify the dynamics of the integrin-binding domain, which is reminiscent of the behavior of mechanosensor proteins. Integrin binding induces a force-dependent conformational change in this domain, shortening its unfolded extension. Our findings suggest that PilY1 roles are force- and ligand-modulated, which could entail a mechanical-based compartmentalization of its functions.

摘要

表面传感启动细菌在底物上的定殖。蛋白质PilY1在此过程中发挥关键作用——表面检测、宿主黏附及运动性——同时经历不同大小的机械扰动。在[具体内容缺失]中,PilY1的黏附与运动功能与整合素及钙配体结合位点相关;然而,机械力如何影响PilY1的动力学及其与这些配体的相互作用仍不清楚。在此,我们使用单分子磁镊揭示PilY1是一种机械传感蛋白,其行为因力负载而异。在高力(>20 pN)下,PilY1通过一系列中间态逐步展开,其机械稳定性随钙结合而增加。这种增强的稳定性可能有助于抵消运动过程中IV型菌毛的回缩力。在低力(<7 pN)下,我们确定了整合素结合结构域的动力学,这让人联想到机械传感蛋白的行为。整合素结合在此结构域中诱导力依赖性构象变化,缩短其展开延伸。我们的研究结果表明,PilY1的作用受力和配体调节,这可能导致其功能基于机械的分区化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2dc9/11891296/e07592e107e6/LSA-2024-03111_Fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验