Zhang Fan, Lee Annie, Freitas Anna, Herb Jake, Wang Zongheng, Gupta Snigdha, Chen Zhe, Xu Hong
National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
bioRxiv. 2024 Sep 16:2024.01.25.577217. doi: 10.1101/2024.01.25.577217.
Mitochondrial biogenesis requires the expression of genes encoded by both the nuclear and mitochondrial genomes. However, aside from a handful transcriptional factors regulating specific subsets of mitochondrial genes, the overall architecture of the transcriptional control of mitochondrial biogenesis remains to be elucidated. The mechanisms coordinating these two genomes are largely unknown. We performed a targeted RNAi screen in developing eyes with reduced mitochondrial DNA content, anticipating a synergistic disruption of tissue development due to impaired mitochondrial biogenesis and mtDNA deficiency. Among 638 transcription factors annotated in Drosophila genome, 77 were identified as potential regulators of mitochondrial biogenesis. Utilizing published ChIP-seq data of positive hits, we constructed a regulatory network revealing the logic of the transcription regulation of mitochondrial biogenesis. Multiple transcription factors in core layers had extensive connections, collectively governing the expression of nearly all mitochondrial genes, whereas factors sitting on the top layer may respond to cellular cues to modulate mitochondrial biogenesis through the underlying network. CG1603, a core component of the network, was found to be indispensable for the expression of most nuclear mitochondrial genes, including those required for mtDNA maintenance and gene expression, thus coordinating nuclear genome and mtDNA activities in mitochondrial biogenies. Additional genetics analyses validated YL-1, a transcription factor upstream of CG1603 in the network, as a regulator controlling CG1603 expression and mitochondrial biogenesis.
线粒体生物合成需要核基因组和线粒体基因组所编码基因的表达。然而,除了少数几个调控线粒体基因特定亚群的转录因子外,线粒体生物合成转录调控的整体架构仍有待阐明。协调这两个基因组的机制在很大程度上尚不清楚。我们在发育中的线粒体DNA含量降低的眼睛中进行了靶向RNA干扰筛选,预期由于线粒体生物合成受损和线粒体DNA缺陷会导致组织发育的协同破坏。在果蝇基因组注释的638个转录因子中,有77个被鉴定为线粒体生物合成的潜在调节因子。利用已发表的阳性命中的染色质免疫沉淀测序(ChIP-seq)数据,我们构建了一个调控网络,揭示了线粒体生物合成转录调控的逻辑。核心层的多个转录因子具有广泛的联系,共同控制几乎所有线粒体基因的表达,而位于顶层的因子可能响应细胞信号,通过底层网络调节线粒体生物合成。网络的核心成分CG1603被发现对于大多数核线粒体基因的表达是不可或缺的,包括那些线粒体DNA维持和基因表达所需的基因,从而在线粒体生物合成中协调核基因组和线粒体DNA的活动。进一步的遗传学分析验证了YL-1,即网络中CG1603上游的一个转录因子,作为控制CG1603表达和线粒体生物合成的调节因子。