Suppr超能文献

深度学习在肾组织学分析中的应用。

Deep learning applications for kidney histology analysis.

机构信息

Institute of Pathology.

Department of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany.

出版信息

Curr Opin Nephrol Hypertens. 2024 May 1;33(3):291-297. doi: 10.1097/MNH.0000000000000973. Epub 2024 Feb 19.

Abstract

PURPOSE OF REVIEW

Nephropathology is increasingly incorporating computational methods to enhance research and diagnostic accuracy. The widespread adoption of digital pathology, coupled with advancements in deep learning, will likely transform our pathology practices. Here, we discuss basic concepts of deep learning, recent applications in nephropathology, current challenges in implementation and future perspectives.

RECENT FINDINGS

Deep learning models have been developed and tested in various areas of nephropathology, for example, predicting kidney disease progression or diagnosing diseases based on imaging and clinical data. Despite their promising potential, challenges remain that hinder a wider adoption, for example, the lack of prospective evidence and testing in real-world scenarios.

SUMMARY

Deep learning offers great opportunities to improve quantitative and qualitative kidney histology analysis for research and clinical nephropathology diagnostics. Although exciting approaches already exist, the potential of deep learning in nephropathology is only at its beginning and we can expect much more to come.

摘要

目的综述

肾脏病学越来越多地采用计算方法来提高研究和诊断的准确性。数字病理学的广泛应用,加上深度学习的进步,可能会改变我们的病理学实践。在这里,我们讨论了深度学习的基本概念、肾脏病学中的最新应用、目前在实施过程中面临的挑战以及未来的展望。

最近的发现

深度学习模型已在肾脏病学的各个领域得到开发和测试,例如,预测肾脏疾病的进展或基于影像学和临床数据诊断疾病。尽管它们具有很大的潜力,但仍存在一些挑战,例如缺乏前瞻性证据和在实际情况下的测试,这些都阻碍了它们的广泛应用。

总结

深度学习为研究和临床肾脏病学诊断提供了改进肾脏组织学定量和定性分析的绝佳机会。尽管已经有令人兴奋的方法,但深度学习在肾脏病学中的潜力才刚刚开始,我们可以期待更多的发展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验