Suppr超能文献

子囊菌酵母打破了长期存在的宏观生态学模式。

Saccharomycotina yeasts defy long-standing macroecological patterns.

机构信息

Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235.

Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235.

出版信息

Proc Natl Acad Sci U S A. 2024 Mar 5;121(10):e2316031121. doi: 10.1073/pnas.2316031121. Epub 2024 Feb 27.

Abstract

The Saccharomycotina yeasts ("yeasts" hereafter) are a fungal clade of scientific, economic, and medical significance. Yeasts are highly ecologically diverse, found across a broad range of environments in every biome and continent on earth; however, little is known about what rules govern the macroecology of yeast species and their range limits in the wild. Here, we trained machine learning models on 12,816 terrestrial occurrence records and 96 environmental variables to infer global distribution maps at 1 km resolution for 186 yeast species (15% of described species from 75% of orders) and to test environmental drivers of yeast biogeography and macroecology. We found that predicted yeast diversity hotspots occur in mixed montane forests in temperate climates. Diversity in vegetation type and topography were some of the greatest predictors of yeast species richness, suggesting that microhabitats and environmental clines are key to yeast diversity. We further found that range limits in yeasts are significantly influenced by carbon niche breadth and range overlap with other yeast species, with carbon specialists and species in high-diversity environments exhibiting reduced geographic ranges. Finally, yeasts contravene many long-standing macroecological principles, including the latitudinal diversity gradient, temperature-dependent species richness, and a positive relationship between latitude and range size (Rapoport's rule). These results unveil how the environment governs the global diversity and distribution of species in the yeast subphylum. These high-resolution models of yeast species distributions will facilitate the prediction of economically relevant and emerging pathogenic species under current and future climate scenarios.

摘要

酿酒酵母(下文简称“酵母”)是一个具有科学、经济和医学意义的真菌类群。酵母在生态上具有高度多样性,在地球上每个生物群落和大陆的各种环境中都有广泛分布;然而,对于什么规则支配着酵母物种的宏观生态学及其在野外的分布范围限制,我们知之甚少。在这里,我们利用机器学习模型对 12816 个陆地出现记录和 96 个环境变量进行了训练,以推断出 186 种酵母物种(来自 75%的目,约占描述物种的 15%)的全球分布地图,分辨率约为 1 公里,并测试了酵母生物地理学和宏观生态学的环境驱动因素。我们发现,预测的酵母多样性热点出现在温带混合山地森林中。植被类型和地形的多样性是预测酵母物种丰富度的最大因素之一,这表明微生境和环境梯度是酵母多样性的关键。我们还发现,酵母的分布范围限制受到碳生态位宽度和与其他酵母物种的分布范围重叠的显著影响,碳专化种和高多样性环境中的物种表现出较小的地理范围。最后,酵母违反了许多长期以来的宏观生态学原则,包括纬度多样性梯度、温度依赖的物种丰富度以及纬度与分布范围大小之间的正相关关系(拉波波特法则)。这些结果揭示了环境如何控制酵母亚门物种的全球多样性和分布。这些酵母物种分布的高分辨率模型将有助于预测在当前和未来气候情景下具有经济意义的相关和新兴致病物种。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01e0/10927492/e6def7a41371/pnas.2316031121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验