Suppr超能文献

协同热释电催化和酶催化:建立互惠和协同模型以增强抗肿瘤活性。

Synergizing Pyroelectric Catalysis and Enzyme Catalysis: Establishing a Reciprocal and Synergistic Model to Enhance Anti-Tumor Activity.

机构信息

Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.

College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.

出版信息

Adv Mater. 2024 Jun;36(24):e2401111. doi: 10.1002/adma.202401111. Epub 2024 Mar 7.

Abstract

Nanozyme activity is greatly weakened by the microenvironment and multidrug resistance of tumor cells. Hence, a bi-catalytic nanoplatform, which promotes the anti-tumor activity through "charging empowerment" and "mutual complementation" processes involved in enzymatic and pyroelectric catalysis, by loading ultra-small nanoparticles (USNPs) of pyroelectric ZnSnO onto MXene nanozyme (VCT nanosheets), is developed. Here, the VCT nanosheets exhibit enhanced peroxidase activity by reacting V with HO to generate toxic ·OH, accelerated by the near-infrared (NIR) light mediated heat effect. The resulting V is then converted to V by oxidizing endogenous glutathione (GSH), realizing an enzyme-catalyzed cycle. However, the cycle will lose its persistence once GSH is insufficient; nevertheless, the pyroelectric charges generated by ZnSnO USNPs continuously support the V/V conversion and ensure nanoenzyme durability. Moreover, the hyperthermia arising from the VCT nanosheets by NIR irradiation results in an ideal local temperature gradient for the ZnSnO USNPs, giving rise to an excellent pyroelectric catalytic effect by promoting band bending. Furthermore, polarized charges increase the tumor cell membrane permeability and facilitate nanodrug accumulation, thereby resolving the multidrug resistance issue. Thus, the combination of pyroelectric and enzyme catalysis together with the photothermal effect solves the dilemma of nanozymes and improves the antitumor efficiency.

摘要

纳米酶的活性会受到肿瘤细胞微环境和多药耐药性的极大削弱。因此,通过将超小的纳米颗粒(USNPs)负载到 MXene 纳米酶(VCT 纳米片)上,开发了一种双催化纳米平台,该平台通过涉及酶和热释电催化的“充电赋能”和“相互补充”过程,促进抗肿瘤活性。在这里,VCT 纳米片通过与 HO 反应生成有毒的·OH 来增强过氧化物酶活性,这一过程由近红外(NIR)光介导的热效应加速。由此产生的 V 通过氧化内源性谷胱甘肽(GSH)转化为 V,实现酶催化循环。然而,一旦 GSH 不足,该循环将失去持久性;然而,ZnSnO USNPs 产生的热释电电荷不断支持 V/V 转换,确保纳米酶的耐久性。此外,NIR 照射 VCT 纳米片产生的热疗会导致 ZnSnO USNPs 产生理想的局部温度梯度,从而通过促进能带弯曲产生优异的热释电催化效应。此外,极化电荷增加肿瘤细胞膜的通透性并促进纳米药物积累,从而解决多药耐药问题。因此,热释电和酶催化的结合以及光热效应解决了纳米酶的困境,提高了抗肿瘤效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验