Zhu Hai, Li Tinghua, Peng Xinhao, Zhang Xiaoxian, Zhang Xuequan, Wang Qiusheng, Lei Lei, Zhang Jun, He Bin, Cao Jun
Department of Oncology, Affiliated Hospital of Southwest Jiaotong University/The Third People's Hospital of Chengdu, Chengdu, 610031, China.
Medical Research Center, Affiliated Hospital of Southwest Jiaotong University/The Third people's Hospital of Chengdu, Chengdu, 610031, China.
Adv Sci (Weinh). 2025 Mar;12(11):e2408998. doi: 10.1002/advs.202408998. Epub 2025 Jan 23.
MXenzymes, a promising class of catalytic therapeutic material, offer great potential for tumor treatment, but they encounter significant obstacles due to suboptimal catalytic efficiency and kinetics in the tumor microenvironment (TME). Herein, this study draws inspiration from the electronic structure of transition metal vanadium, proposing the leverage of TME specific-features to induce structural transformations in sheet-like vanadium carbide MXenzymes (TVMz). These transformations trigger cascading catalytic reactions that amplify oxidative stress, thereby significantly enhancing multimodal tumor therapy. Specifically, the engineered HTVMz, coated with hyaluronic acid, exhibits good stability and generates a thermal effect under NIR-II laser irradiation. The thermal effect, combined with TME characteristics, facilities a structural transformation into ultra-small vanadium oxide nanozymes (VO). The enlarged surface area of VO substantially enhances ROS regeneration and amplifies oxidative stress, which promotes lysosomal permeability and induces endoplasmic reticulum stress. The high-valent vanadium in VO interacts with intracellular glutathione, disrupting redox homeostasis and intensifying oxidative stress further. These amplifications accelerate tumor apoptosis, induce ferroptosis, and suppress HSP90 expression. Consequently, the heightened thermal sensitivity of HTVMz synergistically promotes tumor cell death via multimodal therapeutic pathways. This study presents an innovative strategy for tumor catalytic therapy by manipulating MXenzymes structures, advancing the field of catalytic therapy.
MX酶是一类很有前景的催化治疗材料,在肿瘤治疗方面具有巨大潜力,但由于在肿瘤微环境(TME)中的催化效率和动力学不理想,它们面临着重大障碍。在此,本研究从过渡金属钒的电子结构中获得灵感,提出利用TME的特定特征来诱导片状碳化钒MX酶(TVMz)的结构转变。这些转变引发级联催化反应,放大氧化应激,从而显著增强多模式肿瘤治疗效果。具体而言,经透明质酸包被的工程化HTVMz表现出良好的稳定性,并在近红外二区激光照射下产生热效应。这种热效应与TME特性相结合,促使其结构转变为超小氧化钒纳米酶(VO)。VO增大的表面积显著增强了活性氧(ROS)的再生并放大了氧化应激,这促进了溶酶体通透性并诱导了内质网应激。VO中的高价钒与细胞内谷胱甘肽相互作用,破坏氧化还原稳态并进一步加剧氧化应激。这些放大作用加速了肿瘤细胞凋亡,诱导了铁死亡,并抑制了热休克蛋白90(HSP90)的表达。因此,HTVMz增强的热敏感性通过多模式治疗途径协同促进肿瘤细胞死亡。本研究通过操纵MX酶结构提出了一种创新的肿瘤催化治疗策略,推动了催化治疗领域的发展。