Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333 CC, Netherlands.
Department of Physics, Technical University Dortmund, Otto-Hahn-Strasse 4, Dortmund, 44227, Germany.
Sci Adv. 2023 Mar 15;9(11):eade8839. doi: 10.1126/sciadv.ade8839. Epub 2023 Mar 17.
Proteins can specifically bind to curved membranes through curvature-induced hydrophobic lipid packing defects. The chemical diversity among such curvature "sensors" challenges our understanding of how they differ from general membrane "binders" that bind without curvature selectivity. Here, we combine an evolutionary algorithm with coarse-grained molecular dynamics simulations (Evo-MD) to resolve the peptide sequences that optimally recognize the curvature of lipid membranes. We subsequently demonstrate how a synergy between Evo-MD and a neural network (NN) can enhance the identification and discovery of curvature sensing peptides and proteins. To this aim, we benchmark a physics-trained NN model against experimental data and show that we can correctly identify known sensors and binders. We illustrate that sensing and binding are phenomena that lie on the same thermodynamic continuum, with only subtle but explainable differences in membrane binding free energy, consistent with the serendipitous discovery of sensors.
蛋白质可以通过曲率诱导的疏水性脂质堆积缺陷特异性地结合到弯曲的膜上。这些曲率“传感器”的化学多样性挑战了我们对它们与没有曲率选择性的普通膜“结合剂”之间的差异的理解。在这里,我们结合了进化算法和粗粒化分子动力学模拟(Evo-MD)来确定最佳识别脂质膜曲率的肽序列。随后,我们展示了 Evo-MD 和神经网络(NN)之间的协同作用如何增强曲率感应肽和蛋白质的识别和发现。为此,我们将经过物理训练的 NN 模型与实验数据进行基准测试,并表明我们可以正确识别已知的传感器和结合剂。我们说明感应和结合是处于同一热力学连续体上的现象,只有在膜结合自由能上存在细微但可解释的差异,这与传感器的偶然发现一致。