Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden.
Department of Artificial Intelligence Medicine, Graduate School of Medicine, Chiba, Japan.
BMC Biol. 2024 Feb 27;22(1):48. doi: 10.1186/s12915-024-01845-w.
Primary cilia emanate from most human cell types, including neurons. Cilia are important for communicating with the cell's immediate environment: signal reception and transduction to/from the ciliated cell. Deregulation of ciliary signaling can lead to ciliopathies and certain neurodevelopmental disorders. In the developing brain cilia play well-documented roles for the expansion of the neural progenitor cell pool, while information about the roles of cilia during post-mitotic neuron differentiation and maturation is scarce.
We employed ciliated Lund Human Mesencephalic (LUHMES) cells in time course experiments to assess the impact of ciliary signaling on neuron differentiation. By comparing ciliated and non-ciliated neuronal precursor cells and neurons in wild type and in RFX2 -/- mutant neurons with altered cilia, we discovered an early-differentiation "ciliary time window" during which transient cilia promote axon outgrowth, branching and arborization. Experiments in neurons with IFT88 and IFT172 ciliary gene knockdowns, leading to shorter cilia, confirm these results. Cilia promote neuron differentiation by tipping WNT signaling toward the non-canonical pathway, in turn activating WNT pathway output genes implicated in cyto-architectural changes.
We provide a mechanistic entry point into when and how ciliary signaling coordinates, promotes and translates into anatomical changes. We hypothesize that ciliary alterations causing neuron differentiation defects may result in "mild" impairments of brain development, possibly underpinning certain aspects of neurodevelopmental disorders.
初级纤毛从大多数人类细胞类型中伸出,包括神经元。纤毛对于与细胞的直接环境进行通讯非常重要:信号接收和转导到/来自纤毛细胞。纤毛信号转导的失调可导致纤毛病和某些神经发育障碍。在发育中的大脑中,纤毛对于神经祖细胞池的扩张起着有充分文献记载的作用,而关于纤毛在有丝分裂后神经元分化和成熟过程中的作用的信息却很少。
我们在时间过程实验中使用有纤毛的 Lund Human Mesencephalic(LUHMES)细胞来评估纤毛信号转导对神经元分化的影响。通过比较有纤毛和无纤毛的神经元前体细胞和在野生型和 RFX2 -/- 突变神经元中的神经元,我们发现了一个早期分化的“纤毛时间窗口”,在此期间,短暂的纤毛促进轴突的生长、分支和分支化。IFT88 和 IFT172 纤毛基因敲低实验中的神经元实验证实了这些结果,这些基因导致纤毛变短。纤毛通过将 WNT 信号转导转向非经典途径来促进神经元分化,进而激活与细胞结构变化相关的 WNT 途径输出基因。
我们提供了一个机械学的切入点,说明何时以及如何协调、促进和转化纤毛信号转导,以实现解剖学变化。我们假设导致神经元分化缺陷的纤毛改变可能导致“轻微”的脑发育障碍,可能为某些神经发育障碍的某些方面提供基础。