Suppr超能文献

基于深度学习的支气管树引导的计算机断层扫描图像中肺段半自动分割

Deep learning-based bronchial tree-guided semi-automatic segmentation of pulmonary segments in computed tomography images.

作者信息

Chen Zhi, Wo Bar Wai Barry, Chan Oi Ling, Huang Yu-Hua, Teng Xinzhi, Zhang Jiang, Dong Yanjing, Xiao Li, Ren Ge, Cai Jing

机构信息

Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China.

Department of Clinical Oncology, Tuen Mun Hospital, Hong Kong, China.

出版信息

Quant Imaging Med Surg. 2024 Feb 1;14(2):1636-1651. doi: 10.21037/qims-23-1251. Epub 2024 Jan 2.

Abstract

BACKGROUND

Pulmonary segments are valuable because they can provide more precise localization and intricate details of lung cancer than lung lobes. With advances in precision therapy, there is an increasing demand for the identification and visualization of pulmonary segments in computed tomography (CT) images to aid in the precise treatment of lung cancer. This study aimed to integrate multiple deep-learning models to accurately segment pulmonary segments in CT images using a bronchial tree (BT)-based approach.

METHODS

The proposed segmentation method for pulmonary segments using the BT-based approach comprised the following five essential steps: (I) segmentation of the lung using a U-Net (R231) (public access) model; (II) segmentation of the lobes using a V-Net (self-developed) model; (III) segmentation of the airway using a combination of a differential geometric approach method and a BronchiNet (public access) model; (IV) labeling of the BT branches based on anatomical position; and (V) segmentation of the pulmonary segments based on the distance of each voxel to the labeled BT branches. This five-step process was applied to 14 high-resolution breath-hold CT images and compared against manual segmentations for evaluation.

RESULTS

For the lung segmentation, the lung mask had a mean dice similarity coefficient (DSC) of 0.98±0.03. For the lobe segmentation, the V-Net model had a mean DSC of 0.94±0.06. For the airway segmentation, the average total length of the segmented airway trees per image scan was 1,902.8±502.1 mm, and the average number of the maximum airway tree generations was 8.5±1.3. For the segmentation of the pulmonary segments, the proposed method had a DSC of 0.73±0.11 and a mean surface distance of 6.1±2.9 mm.

CONCLUSIONS

This study demonstrated the feasibility of combining multiple deep-learning models for the auxiliary segmentation of pulmonary segments on CT images using a BT-based approach. The results highlighted the potential of the BT-based method for the semi-automatic segmentation of the pulmonary segment.

摘要

背景

肺段很重要,因为与肺叶相比,它们能为肺癌提供更精确的定位和更详细的细节。随着精准治疗的进展,对计算机断层扫描(CT)图像中肺段的识别和可视化的需求日益增加,以辅助肺癌的精准治疗。本研究旨在整合多个深度学习模型,使用基于支气管树(BT)的方法在CT图像中准确分割肺段。

方法

所提出的基于BT的肺段分割方法包括以下五个基本步骤:(I)使用U-Net(R231)(公开可用)模型分割肺;(II)使用V-Net(自行开发)模型分割肺叶;(III)使用微分几何方法和BronchiNet(公开可用)模型相结合的方法分割气道;(IV)根据解剖位置标记BT分支;(V)根据每个体素到标记的BT分支的距离分割肺段。将这个五步过程应用于14张高分辨率屏气CT图像,并与手动分割进行比较以进行评估。

结果

对于肺分割,肺掩码的平均骰子相似系数(DSC)为0.98±0.03。对于肺叶分割,V-Net模型的平均DSC为0.94±0.06。对于气道分割,每次图像扫描分割出的气道树的平均总长度为1902.8±502.1毫米,气道树的最大世代平均数量为8.5±1.3。对于肺段分割,所提出的方法的DSC为0.73±0.11,平均表面距离为6.1±2.9毫米。

结论

本研究证明了使用基于BT的方法在CT图像上结合多个深度学习模型辅助分割肺段的可行性。结果突出了基于BT的方法在肺段半自动分割方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24a6/10895116/5c426e19abf7/qims-14-02-1636-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验