Suppr超能文献

基于 CT 图像的肺部及其叶部自动分割方法和公共数据集的系统评价及相关发现。

A Systematic Review of Automated Segmentation Methods and Public Datasets for the Lung and its Lobes and Findings on Computed Tomography Images.

机构信息

School of Electrical and Computer Engineering, University of Campinas, Brazil.

School of Medical Sciences, University of Campinas, Brazil.

出版信息

Yearb Med Inform. 2022 Aug;31(1):277-295. doi: 10.1055/s-0042-1742517. Epub 2022 Dec 4.

Abstract

OBJECTIVES

Automated computational segmentation of the lung and its lobes and findings in X-Ray based computed tomography (CT) images is a challenging problem with important applications, including medical research, surgical planning, and diagnostic decision support. With the increase in large imaging cohorts and the need for fast and robust evaluation of normal and abnormal lungs and their lobes, several authors have proposed automated methods for lung assessment on CT images. In this paper we intend to provide a comprehensive summarization of these methods.

METHODS

We used a systematic approach to perform an extensive review of automated lung segmentation methods. We chose Scopus, PubMed, and Scopus to conduct our review and included methods that perform segmentation of the lung parenchyma, lobes or internal disease related findings. The review was not limited by date, but rather by only including methods providing quantitative evaluation.

RESULTS

We organized and classified all 234 included articles into various categories according to methodological similarities among them. We provide summarizations of quantitative evaluations, public datasets, evaluation metrics, and overall statistics indicating recent research directions of the field.

CONCLUSIONS

We noted the rise of data-driven models in the last decade, especially due to the deep learning trend, increasing the demand for high-quality data annotation. This has instigated an increase of semi-supervised and uncertainty guided works that try to be less dependent on human annotation. In addition, the question of how to evaluate the robustness of data-driven methods remains open, given that evaluations derived from specific datasets are not general.

摘要

目的

在基于 X 射线的计算机断层扫描 (CT) 图像中,自动计算分割肺部及其叶区和发现是一个具有重要应用的挑战性问题,包括医学研究、手术规划和诊断决策支持。随着大型成像队列的增加以及对正常和异常肺部及其叶区的快速和稳健评估的需求,许多作者已经提出了用于 CT 图像肺部评估的自动化方法。在本文中,我们旨在对这些方法进行全面总结。

方法

我们采用系统的方法对自动肺分割方法进行了广泛的回顾。我们选择了 Scopus、PubMed 和 Scopus 来进行我们的综述,并包括了对肺实质、叶区或与内部疾病相关的发现进行分割的方法。综述不受时间限制,而是仅包括提供定量评估的方法。

结果

我们根据它们之间的方法相似性将 234 篇纳入的文章组织和分类到各个类别中。我们提供了定量评估、公共数据集、评估指标的摘要以及总体统计数据,这些数据表明了该领域的最新研究方向。

结论

我们注意到,在过去十年中,数据驱动模型的兴起,特别是由于深度学习趋势的兴起,增加了对高质量数据注释的需求。这促使了半监督和不确定性引导工作的增加,这些工作试图减少对人工注释的依赖。此外,如何评估数据驱动方法的稳健性仍然是一个悬而未决的问题,因为特定数据集得出的评估结果并不具有普遍性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/932d/9719778/e2eebe2a4b73/10-1055-s-0042-1742517-icarmo-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验