Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan.
Microbiol Spectr. 2024 Apr 2;12(4):e0285923. doi: 10.1128/spectrum.02859-23. Epub 2024 Feb 28.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilizes several host proteases to cleave the spike (S) protein to enter host cells. SARS-CoV-2 S protein is cleaved into S1 and S2 subunits by furin, which is closely involved in the pathogenicity of SARS-CoV-2. However, the effects of the modulated protease cleavage activity due to S protein mutations on viral replication and pathogenesis remain unclear. Herein, we serially passaged two SARS-CoV-2 strains in Vero cells and characterized the cell-adapted SARS-CoV-2 strains and . The adapted strains showed high viral growth, effective S1/S2 cleavage of the S protein, and low pathogenicity compared with the wild-type strain. Furthermore, the viral growth and S1/S2 cleavage were enhanced by the combination of the Δ68-76 and H655Y mutations using recombinant SARS-CoV-2 strains generated by the circular polymerase extension reaction. The recombinant SARS-CoV-2 strain, which contained the mutation of the adapted strain, showed increased susceptibility to the furin inhibitor, suggesting that the adapted SARS-CoV-2 strain utilized furin more effectively than the wild-type strain. Pathogenicity was attenuated by infection with effectively cleaved recombinant SARS-CoV-2 strains, suggesting that the excessive cleavage of the S proteins decreases virulence. Finally, the high-growth-adapted SARS-CoV-2 strain could be used as the seed for a low-cost inactivated vaccine; immunization with this vaccine can effectively protect the host from SARS-CoV-2 variants. Our findings provide novel insights into the growth and pathogenicity of SARS-CoV-2 in the evolution of cell-cell transmission.
The efficacy of the S protein cleavage generally differs among the SARS-CoV-2 variants, resulting in distinct viral characteristics. The relationship between a mutation and the entry of SARS-CoV-2 into host cells remains unclear. In this study, we analyzed the sequence of high-growth Vero cell-adapted SARS-CoV-2 and factors determining the enhancement of the growth of the adapted virus and confirmed the characteristics of the adapted strain by analyzing the recombinant SARS-CoV-2 strain. We successfully identified mutations Δ68-76 and H655Y, which enhance viral growth and the S protein cleavage by furin. Using recombinant viruses enabled us to conduct a virus challenge experiment . The pathogenicity of SARS-CoV-2 introduced with the mutations Δ68-76, H655Y, P812L, and Q853L was attenuated in hamsters, indicating the possibility of the attenuation of excessive cleaved SARS-CoV-2. These findings provide novel insights into the infectivity and pathogenesis of SARS-CoV-2 strains, thereby significantly contributing to the field of virology.
严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)利用几种宿主蛋白酶将刺突(S)蛋白切割进入宿主细胞。SARS-CoV-2 S 蛋白被弗林蛋白酶切割成 S1 和 S2 亚基,弗林蛋白酶与 SARS-CoV-2 的致病性密切相关。然而,由于 S 蛋白突变导致的调节蛋白酶切割活性对病毒复制和发病机制的影响尚不清楚。在此,我们在 Vero 细胞中连续传代两种 SARS-CoV-2 株,并对适应细胞的 SARS-CoV-2 株 和 进行了特征分析。与野生型株相比,适应株表现出高病毒生长、有效 S1/S2 切割 S 蛋白和低致病性。此外,使用环状聚合酶延伸反应生成的重组 SARS-CoV-2 株,通过 Δ68-76 和 H655Y 突变的组合增强了病毒生长和 S1/S2 切割。含有适应株突变的重组 SARS-CoV-2 株对弗林蛋白酶抑制剂的敏感性增加,表明适应株比野生型株更有效地利用弗林蛋白酶。用有效切割的重组 SARS-CoV-2 株感染导致致病性减弱,表明 S 蛋白的过度切割降低了毒力。最后,高生长适应的 SARS-CoV-2 株可用作低成本灭活疫苗的种子;用该疫苗免疫可有效保护宿主免受 SARS-CoV-2 变体的侵害。我们的研究结果为细胞间传播中 SARS-CoV-2 的生长和致病性进化提供了新的见解。
SARS-CoV-2 变体之间的 S 蛋白切割效力通常不同,导致不同的病毒特征。突变与 SARS-CoV-2 进入宿主细胞之间的关系尚不清楚。在这项研究中,我们分析了高生长 Vero 细胞适应的 SARS-CoV-2 的序列和决定适应病毒生长增强的因素,并通过分析重组 SARS-CoV-2 株确认了适应株的特征。我们成功鉴定了突变 Δ68-76 和 H655Y,它们通过弗林蛋白酶增强病毒生长和 S 蛋白切割。使用重组病毒使我们能够进行病毒挑战实验。突变 Δ68-76、H655Y、P812L 和 Q853L 引入的 SARS-CoV-2 的致病性在仓鼠中减弱,表明过度切割 SARS-CoV-2 的可能性减弱。这些发现为 SARS-CoV-2 株的感染性和发病机制提供了新的见解,从而为病毒学领域做出了重大贡献。