Suppr超能文献

基于结构语法进化的餐后血糖预测学习差分方程。

Learning Difference Equations With Structured Grammatical Evolution for Postprandial Glycaemia Prediction.

出版信息

IEEE J Biomed Health Inform. 2024 May;28(5):3067-3078. doi: 10.1109/JBHI.2024.3371108. Epub 2024 May 6.

Abstract

People with diabetes must carefully monitor their blood glucose levels, especially after eating. Blood glucose management requires a proper combination of food intake and insulin boluses. Glucose prediction is vital to avoid dangerous post-meal complications in treating individuals with diabetes. Although traditional methods, and also artificial neural networks, have shown high accuracy rates, sometimes they are not suitable for developing personalised treatments by physicians due to their lack of interpretability. This study proposes a novel glucose prediction method emphasising interpretability: Interpretable Sparse Identification by Grammatical Evolution. Combined with a previous clustering stage, our approach provides finite difference equations to predict postprandial glucose levels up to two hours after meals. We divide the dataset into four-hour segments and perform clustering based on blood glucose values for the two-hour window before the meal. Prediction models are trained for each cluster for the two-hour windows after meals, allowing predictions in 15-minute steps, yielding up to eight predictions at different time horizons. Prediction safety was evaluated based on Parkes Error Grid regions. Our technique produces safe predictions through explainable expressions, avoiding zones D (0.2% average) and E (0%) and reducing predictions on zone C (6.2%). In addition, our proposal has slightly better accuracy than other techniques, including sparse identification of non-linear dynamics and artificial neural networks. The results demonstrate that our proposal provides interpretable solutions without sacrificing prediction accuracy, offering a promising approach to glucose prediction in diabetes management that balances accuracy, interpretability, and computational efficiency.

摘要

糖尿病患者必须仔细监测血糖水平,尤其是在进食后。血糖管理需要将食物摄入和胰岛素推注适当结合。血糖预测对于避免糖尿病患者餐后并发症至关重要。尽管传统方法和人工神经网络已经显示出了较高的准确率,但由于缺乏可解释性,它们有时并不适合医生制定个性化治疗方案。本研究提出了一种强调可解释性的新型血糖预测方法:基于语法进化的可解释稀疏识别。我们的方法结合了之前的聚类阶段,提供了有限差分方程,以预测餐后两小时内的血糖水平。我们将数据集划分为四小时段,并根据餐前两小时的血糖值进行聚类。为每个聚类的餐后两小时窗口训练预测模型,允许以 15 分钟为步长进行预测,在不同的时间点上生成多达 8 个预测值。基于 Parkes 误差网格区域评估预测的安全性。我们的技术通过可解释的表达式产生安全的预测,避免了 D 区(平均 0.2%)和 E 区(0%),并减少了 C 区(6.2%)的预测。此外,我们的方法比其他技术,包括非线性动力学稀疏识别和人工神经网络,具有略高的准确性。结果表明,我们的方法在不牺牲预测准确性的情况下提供了可解释的解决方案,为糖尿病管理中的血糖预测提供了一种有前途的方法,该方法平衡了准确性、可解释性和计算效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验