Department of Obstetrics and Gynecology, Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, Hebei, China.
Department of Obstetrics and Gynecology, The Second Hospital of Shijiazhuang City, Shijiazhuang, Hebei, China.
Med Sci Monit. 2024 Oct 11;30:e944513. doi: 10.12659/MSM.944513.
BACKGROUND This study aimed to develop a predictive model for the association between maternal and neonatal anthropometric data and neonatal hypoglycemia based on data from mothers with gestational diabetes mellitus (GDM) and their neonates. MATERIAL AND METHODS We included 106 pregnant women with GDM (based on the World Health Organization International Association of Diabetes and Pregnancy Study Groups) and their neonates. Neonatal hypoglycemia was defined as a threshold of 2.5 mmol/L. Neonatal blood glucose levels were performed at 0, 0.5, 1, 3, and 24 h after birth. An artificial neural network (ANN) and recurrent neural network (RNN) were developed to predict the neonate blood concentrations and investigate the relative contribution of maternal and neonate clinical variables to neonatal hypoglycemia. RESULTS Of 106 mothers with GDM, 85% had obesity, and 78% had vaginal deliveries, with neonates averaging a birth weight of 3335.83 g. The ANN model, based on the clinical data from mothers and neonates, predicted blood glucose levels with a high degree of accuracy, achieving a coefficient of determination of 0.869 and a root mean square error (RMSE) of 0.274. Neonatal birth weight and maternal body mass index were the 2 most significant factors in predicting neonatal hypoglycemia, contributing 18.6% and 15.9%, respectively. The RNN model similarly forecasted glucose levels effectively, addressing the dynamic changes in blood glucose with 0.63 mmol/L RMSE and 0.53 mmol/L mean absolute error. CONCLUSIONS ANN and RNN models effectively predict neonatal hypoglycemia in infants of mothers with GDM, highlighting the critical role of maternal and neonatal factors.
本研究旨在基于患有妊娠糖尿病(GDM)的母亲及其新生儿的数据,建立一种预测母亲和新生儿人体测量数据与新生儿低血糖之间关联的模型。
我们纳入了 106 名患有 GDM 的孕妇(基于世界卫生组织国际糖尿病和妊娠研究协会)及其新生儿。新生儿低血糖的定义为阈值 2.5mmol/L。在出生后 0、0.5、1、3 和 24 小时对新生儿进行血糖检测。利用人工神经网络(ANN)和递归神经网络(RNN)预测新生儿血药浓度,并研究母体和新生儿临床变量对新生儿低血糖的相对贡献。
在 106 名患有 GDM 的母亲中,85%患有肥胖症,78%进行了阴道分娩,新生儿的平均出生体重为 3335.83g。基于母亲和新生儿的临床数据,ANN 模型对血糖水平的预测具有很高的准确性,决定系数为 0.869,均方根误差(RMSE)为 0.274。新生儿出生体重和母体体重指数是预测新生儿低血糖的 2 个最重要因素,分别贡献了 18.6%和 15.9%。RNN 模型同样有效地预测了血糖水平,RMSE 为 0.63mmol/L,平均绝对误差为 0.53mmol/L,可解决血糖的动态变化问题。
ANN 和 RNN 模型可有效预测患有 GDM 的母亲的新生儿低血糖,突出了母体和新生儿因素的关键作用。