Center for Cancer Immunotherapy, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA.
Division of Hematology and Oncology, UCSD Moores Cancer Center, 3855 Health Sciences Drive, La Jolla, CA 92093, USA.
Sci Transl Med. 2024 Feb 28;16(736):eabj9905. doi: 10.1126/scitranslmed.abj9905.
The clinical impact of tumor-specific neoantigens as both immunotherapeutic targets and biomarkers has been impeded by the lack of efficient methods for their identification and validation from routine samples. We have developed a platform that combines bioinformatic analysis of tumor exomes and transcriptional data with functional testing of autologous peripheral blood mononuclear cells (PBMCs) to simultaneously identify and validate neoantigens recognized by naturally primed CD4 and CD8 T cell responses across a range of tumor types and mutational burdens. The method features a human leukocyte antigen (HLA)-agnostic bioinformatic algorithm that prioritizes mutations recognized by patient PBMCs at a greater than 40% positive predictive value followed by a short-term in vitro functional assay, which allows interrogation of 50 to 75 expressed mutations from a single 50-ml blood sample. Neoantigens validated by this method include both driver and passenger mutations, and this method identified neoantigens that would not have been otherwise detected using an in silico prediction approach. These findings reveal an efficient approach to systematically validate clinically actionable neoantigens and the T cell receptors that recognize them and demonstrate that patients across a variety of human cancers have a diverse repertoire of neoantigen-specific T cells.
肿瘤特异性新生抗原作为免疫治疗靶点和生物标志物的临床影响受到限制,因为缺乏从常规样本中鉴定和验证它们的有效方法。我们开发了一个平台,将肿瘤外显子组和转录数据的生物信息学分析与自体外周血单核细胞(PBMC)的功能测试相结合,以同时鉴定和验证多种肿瘤类型和突变负担下被自然引发的 CD4 和 CD8 T 细胞反应识别的新生抗原。该方法的特点是一种 HLA 不可知的生物信息学算法,该算法优先考虑患者 PBMC 识别的突变,其阳性预测值大于 40%,然后进行短期体外功能测定,这允许从单个 50 毫升血液样本中检测 50 到 75 个表达的突变。该方法验证的新生抗原包括驱动突变和乘客突变,该方法鉴定了原本无法通过计算机预测方法检测到的新生抗原。这些发现揭示了一种系统验证临床可操作的新生抗原和识别它们的 T 细胞受体的有效方法,并表明各种人类癌症患者具有多样化的新生抗原特异性 T 细胞库。