Geninus Inc., Seoul, 05836, Korea.
Department of Research and Development, SHIFTBIO Inc., Seoul, 02751, Korea.
Exp Mol Med. 2024 Jun;56(6):1461-1471. doi: 10.1038/s12276-024-01259-2. Epub 2024 Jun 12.
Neoantigens are ideal targets for cancer immunotherapy because they are expressed de novo in tumor tissue but not in healthy tissue and are therefore recognized as foreign by the immune system. Advances in next-generation sequencing and bioinformatics technologies have enabled the quick identification and prediction of tumor-specific neoantigens; however, only a small fraction of predicted neoantigens are immunogenic. To improve the predictability of immunogenic neoantigens, we developed the in silico neoantigen prediction workflows VACINUS and VACINUS VACINUS incorporates physical binding between peptides and MHCs (pMHCs), and VACINUS integrates T cell reactivity to the pMHC complex through deep learning-based pairing with T cell receptors (TCRs) of putative tumor-reactive CD8 tumor-infiltrating lymphocytes (TILs). We then validated our neoantigen prediction workflows both in vitro and in vivo in patients with hepatocellular carcinoma (HCC) and in a B16F10 mouse melanoma model. The predictive abilities of VACINUS and VACINUS were confirmed in a validation cohort of 8 patients with HCC. Of a total of 118 neoantigen candidates predicted by VACINUS, 48 peptides were ultimately selected using VACINUS. In vitro validation revealed that among the 48 predicted neoantigen candidates, 13 peptides were immunogenic. Assessment of the antitumor efficacy of the candidate neoepitopes using a VACINUS in vivo mouse model suggested that vaccination with the predicted neoepitopes induced neoantigen-specific T cell responses and enabled the trafficking of neoantigen-specific CD8 + T cell clones into the tumor tissue, leading to tumor suppression. This study showed that the prediction of immunogenic neoantigens can be improved by integrating a tumor-reactive TIL TCR-pMHC ternary complex.
新抗原是癌症免疫治疗的理想靶点,因为它们在肿瘤组织中是新表达的,但在健康组织中不存在,因此被免疫系统识别为外来物。下一代测序和生物信息学技术的进步使得快速识别和预测肿瘤特异性新抗原成为可能;然而,只有一小部分预测的新抗原具有免疫原性。为了提高免疫原性新抗原的可预测性,我们开发了计算机辅助新抗原预测工作流程 VACINUS 和 VACINUS。VACINUS 结合了肽和 MHC 之间的物理结合(pMHC),而 VACINUS 通过与假定的肿瘤反应性 CD8 肿瘤浸润淋巴细胞(TIL)的 TCR 进行基于深度学习的配对,将 T 细胞对 pMHC 复合物的反应性整合在一起。然后,我们在肝癌(HCC)患者和 B16F10 小鼠黑色素瘤模型中进行了体内和体外验证。在 8 例 HCC 患者的验证队列中证实了 VACINUS 和 VACINUS 的预测能力。在总共预测的 118 个新抗原候选者中,有 48 个肽最终通过 VACINUS 被选中。体外验证表明,在预测的 48 个新抗原候选者中,有 13 个肽具有免疫原性。使用 VACINUS 体内小鼠模型评估候选新表位的抗肿瘤疗效表明,接种预测的新表位可诱导新抗原特异性 T 细胞反应,并使新抗原特异性 CD8+T 细胞克隆进入肿瘤组织,从而抑制肿瘤生长。这项研究表明,通过整合肿瘤反应性 TIL TCR-pMHC 三元复合物,可以提高免疫原性新抗原的预测。