Suppr超能文献

基于小波散射网络的抑郁症自动检测

Automated detection of depression using wavelet scattering networks.

机构信息

Department of Electrical Engineering, Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad, India.

Centre for Biomedical Engineering, Indian Institute of Technology Delhi (IITD), Delhi, India.

出版信息

Med Eng Phys. 2024 Feb;124:104107. doi: 10.1016/j.medengphy.2024.104107. Epub 2024 Jan 17.

Abstract

Today, depression is a common problem that affects many people all over the world. It can impact a person's mood and quality of life unless identified and treated immediately. Due to the hectic and stressful modern life seems to be, depression has become a leading cause of mental health illnesses. Signals from electroencephalograms (EEG) are frequently used to detect depression. It is difficult, time-consuming, and highly skilled to manually detect depression using EEG data analysis. Hence, in the proposed study, an automated depression detection system using EEG signals is proposed. The proposed study uses a clinically available dataset and dataset provided by the Department of Psychiatry at the Government Medical College (GMC) in Kozhikode, Kerala, India which consisted of 15 depressed patients and 15 healthy subjects and a publically available Multi-modal Open Dataset (MODMA) for Mental-disorder Analysis available at UK Data service reshare that consisted of 24 depressed patients and 29 healthy subjects. In this study, we have developed a novel Deep Wavelet Scattering Network (DWSN) for the automated detection of depression EEG signals. The best-performing classifier is then chosen by feeding the features into several machine-learning algorithms. For the clinically available GMC dataset, Medium Neural Network (MNN) achieved the highest accuracy of 99.95% with a Kappa value of 0.999. Using the suggested methods, the precision, recall, and F1-score are all 1. For the MODMA dataset, Wide Neural Network (WNN) achieved the highest accuracy of 99.3% with a Kappa value of 0.987. Using the suggested methods, the precision, recall, and F1-score are all 0.99. In comparison to all current methodologies, the performance of the suggested research is superior. The proposed method can be used to automatically diagnose depression both at home and in clinical settings.

摘要

如今,抑郁症是一种常见的问题,影响着全世界许多人。除非及时发现和治疗,否则它会影响一个人的情绪和生活质量。由于现代生活似乎忙碌而充满压力,抑郁症已成为心理健康疾病的主要原因。脑电图 (EEG) 的信号常被用于检测抑郁症。使用 EEG 数据分析来手动检测抑郁症既困难又耗时,且需要高度的专业技能。因此,在本研究中,提出了一种使用 EEG 信号的自动化抑郁症检测系统。本研究使用了一个临床可用的数据集和印度喀拉拉邦政府医学院 (GMC) 精神病学部提供的数据集,其中包括 15 名抑郁症患者和 15 名健康受试者,以及英国数据服务再共享的一个公开的多模态公开数据集 (MODMA) 用于精神障碍分析,其中包括 24 名抑郁症患者和 29 名健康受试者。在这项研究中,我们开发了一种新的深度小波散射网络 (DWSN),用于自动检测抑郁 EEG 信号。然后通过将特征输入到几个机器学习算法中,选择表现最佳的分类器。对于临床可用的 GMC 数据集,中型神经网络 (MNN) 以 99.95%的最高准确率和 0.999 的 Kappa 值达到最高准确率。使用所建议的方法,准确率、召回率和 F1 得分均为 1。对于 MODMA 数据集,宽神经网络 (WNN) 以 99.3%的最高准确率和 0.987 的 Kappa 值达到最高准确率。使用所建议的方法,准确率、召回率和 F1 得分均为 0.99。与所有当前的方法相比,所提出的研究的性能更优。该方法可用于在家庭和临床环境中自动诊断抑郁症。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验