Suppr超能文献

基于深度卷积神经网络的自动 EEG 抑郁筛查。

Automated EEG-based screening of depression using deep convolutional neural network.

机构信息

Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, 535 Clementi Road, Singapore 599489, Singapore; Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Singapore; Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Malaysia.

Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, 535 Clementi Road, Singapore 599489, Singapore.

出版信息

Comput Methods Programs Biomed. 2018 Jul;161:103-113. doi: 10.1016/j.cmpb.2018.04.012. Epub 2018 Apr 18.

Abstract

In recent years, advanced neurocomputing and machine learning techniques have been used for Electroencephalogram (EEG)-based diagnosis of various neurological disorders. In this paper, a novel computer model is presented for EEG-based screening of depression using a deep neural network machine learning approach, known as Convolutional Neural Network (CNN). The proposed technique does not require a semi-manually-selected set of features to be fed into a classifier for classification. It learns automatically and adaptively from the input EEG signals to differentiate EEGs obtained from depressive and normal subjects. The model was tested using EEGs obtained from 15 normal and 15 depressed patients. The algorithm attained accuracies of 93.5% and 96.0% using EEG signals from the left and right hemisphere, respectively. It was discovered in this research that the EEG signals from the right hemisphere are more distinctive in depression than those from the left hemisphere. This discovery is consistent with recent research and revelation that the depression is associated with a hyperactive right hemisphere. An exciting extension of this research would be diagnosis of different stages and severity of depression and development of a Depression Severity Index (DSI).

摘要

近年来,先进的神经计算和机器学习技术已被用于基于脑电图 (EEG) 的各种神经疾病诊断。在本文中,提出了一种新的基于计算机的抑郁症筛选模型,使用深度神经网络机器学习方法,即卷积神经网络 (CNN)。该技术不需要将一组半自动选择的特征输入分类器进行分类。它可以自动从输入的 EEG 信号中学习,并自适应地对来自抑郁和正常受试者的 EEG 进行区分。该模型使用 15 名正常人和 15 名抑郁症患者的 EEG 进行了测试。该算法分别使用左右半球的 EEG 信号,实现了 93.5%和 96.0%的准确率。本研究发现,右半球的 EEG 信号在抑郁症中比左半球更具特征性。这一发现与最近的研究和启示一致,即抑郁症与右半球过度活跃有关。这项研究的一个令人兴奋的扩展将是不同阶段和严重程度的抑郁症的诊断以及抑郁严重程度指数 (DSI) 的开发。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验