Suppr超能文献

基于脑电图的抑郁症检测:使用多种机器学习技术

Electroencephalography-Based Depression Detection Using Multiple Machine Learning Techniques.

作者信息

Ksibi Amel, Zakariah Mohammed, Menzli Leila Jamel, Saidani Oumaima, Almuqren Latifah, Hanafieh Rosy Awny Mohamed

机构信息

Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia.

Department of Computer Science, College of Computer and Information Sciences, Riyadh 11442, Saudi Arabia.

出版信息

Diagnostics (Basel). 2023 May 17;13(10):1779. doi: 10.3390/diagnostics13101779.

Abstract

The growth of biomedical engineering has made depression diagnosis via electroencephalography (EEG) a trendy issue. The two significant challenges to this application are EEG signals' complexity and non-stationarity. Additionally, the effects caused by individual variances may hamper the generalization of detection systems. Given the association between EEG signals and particular demographics, such as gender and age, and the influences of these demographic characteristics on the incidence of depression, it would be preferable to include demographic factors during EEG modeling and depression detection. The main objective of this work is to develop an algorithm that can recognize depression patterns by studying EEG data. Following a multiband analysis of such signals, machine learning and deep learning techniques were used to detect depression patients automatically. EEG signal data are collected from the multi-modal open dataset MODMA and employed in studying mental diseases. The EEG dataset contains information from a traditional 128-electrode elastic cap and a cutting-edge wearable 3-electrode EEG collector for widespread applications. In this project, resting EEG readings of 128 channels are considered. According to CNN, training with 25 epoch iterations had a 97% accuracy rate. The patient's status has to be divided into two basic categories: major depressive disorder (MDD) and healthy control. Additional MDD include the following six classes: obsessive-compulsive disorders, addiction disorders, conditions brought on by trauma and stress, mood disorders, schizophrenia, and the anxiety disorders discussed in this paper are a few examples of mental illnesses. According to the study, a natural combination of EEG signals and demographic data is promising for the diagnosis of depression.

摘要

生物医学工程的发展使通过脑电图(EEG)诊断抑郁症成为一个热门话题。这种应用面临的两个重大挑战是EEG信号的复杂性和非平稳性。此外,个体差异所产生的影响可能会妨碍检测系统的通用性。鉴于EEG信号与特定人口统计学特征(如性别和年龄)之间的关联,以及这些人口统计学特征对抑郁症发病率的影响,在EEG建模和抑郁症检测过程中纳入人口统计学因素会更好。这项工作的主要目标是开发一种算法,该算法可以通过研究EEG数据来识别抑郁症模式。在对这些信号进行多频段分析之后,使用机器学习和深度学习技术自动检测抑郁症患者。EEG信号数据是从多模态开放数据集MODMA收集的,并用于研究精神疾病。该EEG数据集包含来自传统的128电极弹性帽以及用于广泛应用的前沿可穿戴3电极EEG采集器的信息。在这个项目中,考虑了128个通道的静息EEG读数。根据卷积神经网络(CNN),经过25个轮次的迭代训练,准确率达到了97%。患者的状态必须分为两个基本类别:重度抑郁症(MDD)和健康对照。其他MDD包括以下六个类别:强迫症、成瘾症、由创伤和压力引起的病症、情绪障碍、精神分裂症,本文中讨论的焦虑症是一些精神疾病的例子。根据这项研究,EEG信号与人口统计学数据的自然结合对于抑郁症的诊断很有前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04f4/10217709/5a45039ee4d4/diagnostics-13-01779-g010.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验