文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过随机的表观基因组编辑实现体内持久而高效的基因沉默。

Durable and efficient gene silencing in vivo by hit-and-run epigenome editing.

机构信息

San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.

Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy.

出版信息

Nature. 2024 Mar;627(8003):416-423. doi: 10.1038/s41586-024-07087-8. Epub 2024 Feb 28.


DOI:10.1038/s41586-024-07087-8
PMID:38418872
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10937395/
Abstract

Permanent epigenetic silencing using programmable editors equipped with transcriptional repressors holds great promise for the treatment of human diseases. However, to unlock its full therapeutic potential, an experimental confirmation of durable epigenetic silencing after the delivery of transient delivery of editors in vivo is needed. To this end, here we targeted Pcsk9, a gene expressed in hepatocytes that is involved in cholesterol homeostasis. In vitro screening of different editor designs indicated that zinc-finger proteins were the best-performing DNA-binding platform for efficient silencing of mouse Pcsk9. A single administration of lipid nanoparticles loaded with the editors' mRNAs almost halved the circulating levels of PCSK9 for nearly one year in mice. Notably, Pcsk9 silencing and accompanying epigenetic repressive marks also persisted after forced liver regeneration, further corroborating the heritability of the newly installed epigenetic state. Improvements in construct design resulted in the development of an all-in-one configuration that we term evolved engineered transcriptional repressor (EvoETR). This design, which is characterized by a high specificity profile, further reduced the circulating levels of PCSK9 in mice with an efficiency comparable with that obtained through conventional gene editing, but without causing DNA breaks. Our study lays the foundation for the development of in vivo therapeutics that are based on epigenetic silencing.

摘要

利用配备转录抑制剂的可编程编辑工具实现永久性表观遗传沉默,为治疗人类疾病带来了巨大的希望。然而,为了充分发挥其治疗潜力,需要在体内瞬时递送编辑工具后,对其进行持久的表观遗传沉默进行实验验证。为此,我们选择了 Pcsk9 作为研究对象,这是一种在肝细胞中表达的基因,参与胆固醇稳态的调节。体外对不同编辑工具设计的筛选表明,锌指蛋白是实现高效沉默小鼠 Pcsk9 的最佳 DNA 结合平台。单次给予载有编辑工具 mRNA 的脂质纳米颗粒,可使近一年时间内小鼠的 PCSK9 循环水平降低近一半。值得注意的是,Pcsk9 的沉默以及伴随的表观遗传抑制标记在强制肝再生后仍然存在,进一步证实了新建立的表观遗传状态的遗传性。通过改进构建设计,我们开发了一种称为进化工程转录抑制剂(EvoETR)的一体化设计。该设计具有高特异性特征,能够进一步降低小鼠体内 PCSK9 的循环水平,其效率与传统基因编辑相当,但不会引起 DNA 断裂。我们的研究为基于表观遗传沉默的体内治疗方法的发展奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b1/10937395/58b2a203b65e/41586_2024_7087_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b1/10937395/5157f639a8d7/41586_2024_7087_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b1/10937395/d526b18cb970/41586_2024_7087_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b1/10937395/c69150300833/41586_2024_7087_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b1/10937395/1b7692a428ae/41586_2024_7087_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b1/10937395/c9478e79b885/41586_2024_7087_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b1/10937395/c642bab046f2/41586_2024_7087_Fig6_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b1/10937395/9a62ad49d342/41586_2024_7087_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b1/10937395/8df09b243a2a/41586_2024_7087_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b1/10937395/c54f94c84a77/41586_2024_7087_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b1/10937395/ba8a4a3fdfcd/41586_2024_7087_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b1/10937395/a8cd54a20c88/41586_2024_7087_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b1/10937395/58b2a203b65e/41586_2024_7087_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b1/10937395/5157f639a8d7/41586_2024_7087_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b1/10937395/d526b18cb970/41586_2024_7087_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b1/10937395/c69150300833/41586_2024_7087_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b1/10937395/1b7692a428ae/41586_2024_7087_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b1/10937395/c9478e79b885/41586_2024_7087_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b1/10937395/c642bab046f2/41586_2024_7087_Fig6_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b1/10937395/9a62ad49d342/41586_2024_7087_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b1/10937395/8df09b243a2a/41586_2024_7087_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b1/10937395/c54f94c84a77/41586_2024_7087_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b1/10937395/ba8a4a3fdfcd/41586_2024_7087_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b1/10937395/a8cd54a20c88/41586_2024_7087_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b1/10937395/58b2a203b65e/41586_2024_7087_Fig12_ESM.jpg

相似文献

[1]
Durable and efficient gene silencing in vivo by hit-and-run epigenome editing.

Nature. 2024-3

[2]
In Vivo Base Editing of PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) as a Therapeutic Alternative to Genome Editing.

Arterioscler Thromb Vasc Biol. 2017-9

[3]
In Vitro Selection of Engineered Transcriptional Repressors for Targeted Epigenetic Silencing.

J Vis Exp. 2023-5-5

[4]
Inheritable Silencing of Endogenous Genes by Hit-and-Run Targeted Epigenetic Editing.

Cell. 2016-9-22

[5]
An epigenome editing approach induces durable silencing of Pcsk9.

Nat Rev Cardiol. 2024-5

[6]
In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates.

Nature. 2021-5

[7]
Determinants of heritable gene silencing for KRAB-dCas9 + DNMT3 and Ezh2-dCas9 + DNMT3 hit-and-run epigenome editing.

Nucleic Acids Res. 2022-4-8

[8]
CRISPR-Cas9 Targeting of PCSK9 in Human Hepatocytes In Vivo-Brief Report.

Arterioscler Thromb Vasc Biol. 2016-5

[9]
RNA-guided transcriptional silencing in vivo with S. aureus CRISPR-Cas9 repressors.

Nat Commun. 2018-4-26

[10]
Non-viral Delivery of Zinc Finger Nuclease mRNA Enables Highly Efficient In Vivo Genome Editing of Multiple Therapeutic Gene Targets.

Mol Ther. 2019-3-7

引用本文的文献

[1]
Epigenetic Regulation of Aging and its Rejuvenation.

MedComm (2020). 2025-9-1

[2]
Rewriting the vascular script: epigenetic modifiers as scribes of metabolic reprogramming in pulmonary hypertension.

J Mol Med (Berl). 2025-9-3

[3]
CRISPR tools for T cells: targeting the genome, epigenome, and transcriptome.

Trends Cancer. 2025-8-28

[4]
Programmable epigenome editing by transient delivery of CRISPR epigenome editor ribonucleoproteins.

Nat Commun. 2025-8-26

[5]
The epigenetic circle: feedback loops in the maintenance of cellular memory.

Epigenetics Chromatin. 2025-8-20

[6]
Emerging roles of epigenetic regulators during lung development.

Cell Death Dis. 2025-7-28

[7]
Modulating immune cell fate and inflammation through CRISPR-mediated DNA methylation editing.

Sci Adv. 2025-7-18

[8]
CRISPR-based therapeutic genome editing for inherited blood disorders.

Nat Rev Drug Discov. 2025-7-14

[9]
Epigenome Engineering Using dCas Systems for Biomedical Applications and Biotechnology: Current Achievements, Opportunities and Challenges.

Int J Mol Sci. 2025-7-2

[10]
Dissecting the epigenetic regulation of the fetal hemoglobin genes to unravel a novel therapeutic approach for β-hemoglobinopathies.

Nucleic Acids Res. 2025-7-8

本文引用的文献

[1]
Genotoxic effects of base and prime editing in human hematopoietic stem cells.

Nat Biotechnol. 2024-6

[2]
Toward the Development of Epigenome Editing-Based Therapeutics: Potentials and Challenges.

Int J Mol Sci. 2023-3-1

[3]
Unlocking the promise of mRNA therapeutics.

Nat Biotechnol. 2022-11

[4]
Frequent aneuploidy in primary human T cells after CRISPR-Cas9 cleavage.

Nat Biotechnol. 2022-12

[5]
Drug delivery systems for RNA therapeutics.

Nat Rev Genet. 2022-5

[6]
In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates.

Nature. 2021-5

[7]
Chromothripsis as an on-target consequence of CRISPR-Cas9 genome editing.

Nat Genet. 2021-6

[8]
Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing.

Cell. 2021-4-29

[9]
Long-lasting analgesia via targeted in situ repression of Na1.7 in mice.

Sci Transl Med. 2021-3-10

[10]
Quantitative evaluation of chromosomal rearrangements in gene-edited human stem cells by CAST-Seq.

Cell Stem Cell. 2021-6-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索