Russo Valentina, Prencipe Giuseppe, Mauro Annunziata, El Khatib Mohammad, Haidar-Montes Arlette A, Cambise Nico, Turriani Maura, Stöckl Johannes, Steinberger Peter, Lancia Loreto, Schnabelrauch Matthias, Berardinelli Paolo, Barboni Barbara
Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy.
Research & Development Department, Assut Europe S.p.A., Magliano dei Marsi, 67062 L'Aquila, Italy.
Mater Today Bio. 2024 Feb 18;25:101001. doi: 10.1016/j.mtbio.2024.101001. eCollection 2024 Apr.
Tendon diseases pose a significant challenge in regenerative medicine due to the limited healing capacity of this tissue. Successful tendon regeneration requires a combination of angiogenesis, immune response, and tenogenesis processes. An effective tendon engineering (TE) strategy must finely tune this systems' interplay toward homeostasis. This study explores the paracrine influence of amniotic epithelial stem cells (AECs) engineered on a validated 3D electrospun PLGA scaffolds on HUVECs (angiogenesis), PBMCs/Jurkat (immune response), and AECs (tenogenic stem cell activation). The results revealed the role of scaffold's topology and topography in significantly modulating the paracrine profile of the cells. In detail, AECs basal release of bioactive molecules was boosted in the cells engineered on 3D scaffolds, in particular VEGF-D, b-FGF, RANTES, and PDGF-BB ( < 0.0001 vs. CM). Moreover, biological tests demonstrated 3D scaffolds' proactive role in potentiating AECs' paracrine inhibition on PBMCs proliferation (CM CTR, < 0.001) and LPS-mediated Jurkat activation with respect to controls (CM and CM CTR, < 0.01 and < 0.05, respectively), without exerting any pro-angiogenic role in promoting HUVECs proliferation and tubule formation. Teno-inductive paracrine ability of AECs engineered on 3D scaffolds was assessed on co-cultured ones, which formed tendon-like structures. These latter demonstrated an upregulation of tendon-related genes ( and ) and the expression TNMD and COL1 proteins. Overall, this research underscores the pivotal role of the 3D topology and topography of PLGA tendon mimetic scaffolds in orchestrating effective tendon regeneration through modulating cell behavior and crosstalk between engineered stem cells and different subpopulations in the damaged tendon.
由于肌腱组织的愈合能力有限,肌腱疾病在再生医学中构成了重大挑战。成功的肌腱再生需要血管生成、免疫反应和腱形成过程的协同作用。有效的肌腱工程(TE)策略必须精细调节该系统之间的相互作用以实现稳态。本研究探讨了在经过验证的3D电纺聚乳酸-羟基乙酸共聚物(PLGA)支架上工程化的羊膜上皮干细胞(AEC)对人脐静脉内皮细胞(HUVEC,血管生成)、外周血单核细胞/人白血病T淋巴细胞(PBMCs/Jurkat,免疫反应)和AEC(腱源性干细胞激活)的旁分泌影响。结果揭示了支架的拓扑结构和表面形貌在显著调节细胞旁分泌谱方面的作用。具体而言,在3D支架上工程化的细胞中,AEC生物活性分子的基础释放得到增强,特别是血管内皮生长因子D(VEGF-D)、碱性成纤维细胞生长因子(b-FGF)、调节激活正常T细胞表达和分泌因子(RANTES)和血小板衍生生长因子BB(PDGF-BB)(与条件培养基相比,P<0.0001)。此外,生物学测试表明,与对照相比(条件培养基和条件培养基对照,分别为P<0.01和P<0.05),3D支架在增强AEC对PBMC增殖的旁分泌抑制作用(条件培养基对照,P<0.001)以及脂多糖(LPS)介导的Jurkat激活方面具有积极作用,而在促进HUVEC增殖和小管形成方面未发挥任何促血管生成作用。在共培养形成肌腱样结构的细胞上评估了在3D支架上工程化的AEC的腱诱导旁分泌能力。后者显示肌腱相关基因(和)以及肌腱蛋白聚糖(TNMD)和I型胶原蛋白(COL1)蛋白的表达上调。总体而言,本研究强调了PLGA肌腱模拟支架的3D拓扑结构和表面形貌在通过调节细胞行为以及工程化干细胞与受损肌腱中不同亚群之间的串扰来协调有效的肌腱再生中的关键作用。