Fiorito Sergio, Silvestri Matteo, Cirignano Matilde, Marini Andrea, Di Stasio Francesco
Photonic Nanomaterials, Istituto Italiano di Tecnologia, 16163 Genoa, Italy.
Dipartimento di Scienze Fisiche e Chimiche, Università degli studi dell'Aquila, 67100 L'Aquila, Italy.
ACS Appl Nano Mater. 2024 Feb 12;7(4):3724-3733. doi: 10.1021/acsanm.3c05223. eCollection 2024 Feb 23.
The growth of SiO shells on semiconductor nanocrystals is an established procedure and it is widely employed to provide dispersibility in polar solvents, and increased stability or biocompatibility. However, to exploit this shell to integrate photonic components on semiconductor nanocrystals, the growth procedure must be finely tunable and able to reach large particle sizes (around 100 nm or above). Here, we demonstrate that these goals are achievable through a design of experiment approach. Indeed, the use of a sequential full-factorial design allows us to carefully tune the growth of SiO shells to large values while maintaining a reduced size dispersion. Moreover, we show that the growth of a dielectric shell alone can be beneficial in terms of emission efficiency for the nanocrystal. We also demonstrate that, according to our modeling, the subsequent growth of two shells with increasing refractive index leads to an improved emission efficiency already at a reduced SiO sphere radius.
在半导体纳米晶体上生长SiO壳层是一种既定的方法,并且被广泛用于在极性溶剂中提供分散性,以及提高稳定性或生物相容性。然而,为了利用这种壳层在半导体纳米晶体上集成光子组件,生长过程必须能够精细调节,并且能够达到较大的粒径(约100纳米或更大)。在此,我们证明通过实验设计方法可以实现这些目标。事实上,使用顺序全因子设计使我们能够在保持较小尺寸分散性的同时,将SiO壳层的生长精细调节到较大值。此外,我们表明仅生长介电壳层就纳米晶体的发射效率而言可能是有益的。我们还证明,根据我们的模型,随后生长两个折射率递增的壳层,即使在减小的SiO球半径下也能提高发射效率。