Suppr超能文献

PrestoCell:一种基于持久性的聚类方法,用于快速、稳健地分割三维数据中的细胞形态。

PrestoCell: A persistence-based clustering approach for rapid and robust segmentation of cellular morphology in three-dimensional data.

机构信息

Department of Computer Science, UC Davis, Davis, California, United States of America.

Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, UC Davis, Davis, California, United States of America.

出版信息

PLoS One. 2024 Feb 29;19(2):e0299006. doi: 10.1371/journal.pone.0299006. eCollection 2024.

Abstract

Light microscopy methods have continued to advance allowing for unprecedented analysis of various cell types in tissues including the brain. Although the functional state of some cell types such as microglia can be determined by morphometric analysis, techniques to perform robust, quick, and accurate measurements have not kept pace with the amount of imaging data that can now be generated. Most of these image segmentation tools are further burdened by an inability to assess structures in three-dimensions. Despite the rise of machine learning techniques, the nature of some biological structures prevents the training of several current day implementations. Here we present PrestoCell, a novel use of persistence-based clustering to segment cells in light microscopy images, as a customized Python-based tool that leverages the free multidimensional image viewer Napari. In evaluating and comparing PrestoCell to several existing tools, including 3DMorph, Omipose, and Imaris, we demonstrate that PrestoCell produces image segmentations that rival these solutions. In particular, our use of cell nuclei information resulted in the ability to correctly segment individual cells that were interacting with one another to increase accuracy. These benefits are in addition to the simplified graphically based user refinement of cell masks that does not require expensive commercial software licenses. We further demonstrate that PrestoCell can complete image segmentation in large samples from light sheet microscopy, allowing quantitative analysis of these large datasets. As an open-source program that leverages freely available visualization software, with minimum computer requirements, we believe that PrestoCell can significantly increase the ability of users without data or computer science expertise to perform complex image analysis.

摘要

光学显微镜方法不断发展,使得对组织中各种细胞类型(包括大脑)进行前所未有的分析成为可能。虽然某些细胞类型(如小胶质细胞)的功能状态可以通过形态计量分析来确定,但能够进行稳健、快速和准确测量的技术并没有跟上现在可以生成的成像数据量的步伐。这些图像分割工具中的大多数还受到无法评估三维结构的限制。尽管机器学习技术有所兴起,但某些生物结构的性质阻止了目前几种实现方式的训练。在这里,我们提出了 PrestoCell,这是一种基于持久性聚类的新方法,用于分割光学显微镜图像中的细胞,它是一个基于 Python 的定制工具,利用免费的多维图像查看器 Napari。在评估和比较 PrestoCell 与包括 3DMorph、Omipose 和 Imaris 在内的几种现有工具时,我们证明 PrestoCell 生成的图像分割与这些解决方案相当。特别是,我们对细胞核信息的使用使得能够正确分割相互作用的单个细胞,从而提高了准确性。除了简化基于图形的用户对细胞掩模的细化之外,这些优势不需要昂贵的商业软件许可证。我们进一步证明 PrestoCell 可以完成光片显微镜大样本的图像分割,允许对这些大型数据集进行定量分析。作为一个利用免费可视化软件的开源程序,具有最低的计算机要求,我们相信 PrestoCell 可以极大地提高没有数据或计算机科学专业知识的用户执行复杂图像分析的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a424/10903871/761ce0819a03/pone.0299006.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验