Suppr超能文献

DeepD3,一个用于自动量化树突棘的开放框架。

DeepD3, an open framework for automated quantification of dendritic spines.

机构信息

Max-Planck-Institute for Biological Intelligence, Martinsried, Bavaria, Germany.

Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Bavaria, Germany.

出版信息

PLoS Comput Biol. 2024 Feb 29;20(2):e1011774. doi: 10.1371/journal.pcbi.1011774. eCollection 2024 Feb.

Abstract

Dendritic spines are the seat of most excitatory synapses in the brain, and a cellular structure considered central to learning, memory, and activity-dependent plasticity. The quantification of dendritic spines from light microscopy data is usually performed by humans in a painstaking and error-prone process. We found that human-to-human variability is substantial (inter-rater reliability 82.2±6.4%), raising concerns about the reproducibility of experiments and the validity of using human-annotated 'ground truth' as an evaluation method for computational approaches of spine identification. To address this, we present DeepD3, an open deep learning-based framework to robustly quantify dendritic spines in microscopy data in a fully automated fashion. DeepD3's neural networks have been trained on data from different sources and experimental conditions, annotated and segmented by multiple experts and they offer precise quantification of dendrites and dendritic spines. Importantly, these networks were validated in a number of datasets on varying acquisition modalities, species, anatomical locations and fluorescent indicators. The entire DeepD3 open framework, including the fully segmented training data, a benchmark that multiple experts have annotated, and the DeepD3 model zoo is fully available, addressing the lack of openly available datasets of dendritic spines while offering a ready-to-use, flexible, transparent, and reproducible spine quantification method.

摘要

树突棘是大脑中大多数兴奋性突触的所在,也是被认为与学习、记忆和活动依赖性可塑性密切相关的细胞结构。从光学显微镜数据中对树突棘进行量化通常需要人类进行艰苦且容易出错的过程。我们发现人与人之间的差异很大(评分者间可靠性 82.2±6.4%),这让人对实验的可重复性以及将人类注释的“真实情况”用作计算方法识别树突棘的评估方法的有效性产生了担忧。为了解决这个问题,我们提出了 DeepD3,这是一个基于深度学习的开放框架,可以全自动地对显微镜数据中的树突棘进行稳健的量化。DeepD3 的神经网络是基于来自不同来源和实验条件的数据进行训练的,这些数据由多个专家进行注释和分割,并且可以精确地量化树突和树突棘。重要的是,这些网络在多个数据集上进行了验证,涵盖了不同的采集方式、物种、解剖位置和荧光指示剂。整个 DeepD3 开放框架,包括完全分割的训练数据、多个专家注释的基准数据集,以及 DeepD3 模型库都完全可用,解决了缺乏公开可用的树突棘数据集的问题,同时提供了一种即用型、灵活、透明且可重复的树突棘量化方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c2b/10903918/b397f7e2c8ec/pcbi.1011774.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验