Garcia Sergio B, Schlotter Alexa P, Pereira Daniela, Recupero Aleksandra J, Polleux Franck, Hammond Luke A
Department of Biological Sciences, Columbia University, New York, NY, USA.
Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
bioRxiv. 2025 Feb 15:2024.06.06.597812. doi: 10.1101/2024.06.06.597812.
Quantification of dendritic spines is essential for studying synaptic connectivity, yet most current approaches require manual adjustments or the combination of multiple software tools for optimal results. Here, we present Restoration Enhanced SPine And Neuron Analysis (RESPAN), an open-source pipeline integrating state-of-the-art deep learning for image restoration, segmentation, and analysis in an easily deployable, user-friendly interface. Leveraging content-aware restoration to enhance signal, contrast, and isotropic resolution further enhances RESPAN's robust detection of spines, dendritic branches, and soma across a wide variety of samples, including challenging datasets such as those from live imaging and in vivo 2-photon microscopy with limited signal. Extensive validation against expert annotations and comparison with other software demonstrates RESPAN's superior accuracy and reproducibility across multiple imaging modalities. RESPAN offers significant improvements in usability over currently available approaches, streamlining and democratizing access to a combination of advanced capabilities through an accessible resource for the neuroscience community.
树突棘的量化对于研究突触连接至关重要,但目前大多数方法都需要手动调整或结合多种软件工具才能获得最佳结果。在此,我们展示了恢复增强型棘突和神经元分析(RESPAN),这是一个开源管道,它将用于图像恢复、分割和分析的最先进深度学习技术集成在一个易于部署、用户友好的界面中。利用内容感知恢复来增强信号、对比度和各向同性分辨率,进一步提高了RESPAN在各种样本中对棘突、树突分支和胞体的稳健检测能力,包括来自活体成像和体内双光子显微镜等具有挑战性的数据集,这些数据集信号有限。与专家注释进行的广泛验证以及与其他软件的比较表明,RESPAN在多种成像模式下具有卓越的准确性和可重复性。与目前可用的方法相比,RESPAN在可用性方面有显著改进,通过为神经科学界提供一个可访问的资源,简化并使获取一系列先进功能的过程民主化。