Department of Electrical & Computer Engineering, Duke University, Durham, 27708, NC, USA.
Department of Statistical Science, Duke University, Durham, 27708, NC, USA.
J Biomed Inform. 2024 Apr;152:104615. doi: 10.1016/j.jbi.2024.104615. Epub 2024 Feb 27.
Sepsis is one of the most serious hospital conditions associated with high mortality. Sepsis is the result of a dysregulated immune response to infection that can lead to multiple organ dysfunction and death. Due to the wide variability in the causes of sepsis, clinical presentation, and the recovery trajectories, identifying sepsis sub-phenotypes is crucial to advance our understanding of sepsis characterization, to choose targeted treatments and optimal timing of interventions, and to improve prognostication. Prior studies have described different sub-phenotypes of sepsis using organ-specific characteristics. These studies applied clustering algorithms to electronic health records (EHRs) to identify disease sub-phenotypes. However, prior approaches did not capture temporal information and made uncertain assumptions about the relationships among the sub-phenotypes for clustering procedures.
We developed a time-aware soft clustering algorithm guided by clinical variables to identify sepsis sub-phenotypes using data available in the EHR.
We identified six novel sepsis hybrid sub-phenotypes and evaluated them for medical plausibility. In addition, we built an early-warning sepsis prediction model using logistic regression.
Our results suggest that these novel sepsis hybrid sub-phenotypes are promising to provide more accurate information on sepsis-related organ dysfunction and sepsis recovery trajectories which can be important to inform management decisions and sepsis prognosis.
败血症是与高死亡率相关的最严重的医院病症之一。败血症是感染引起的免疫反应失调的结果,可导致多器官功能障碍和死亡。由于败血症的病因、临床表现和恢复轨迹存在广泛的可变性,确定败血症的亚表型对于深入了解败血症的特征、选择有针对性的治疗方法和干预的最佳时机以及改善预后至关重要。先前的研究已经使用器官特异性特征描述了败血症的不同亚表型。这些研究应用聚类算法对电子病历 (EHR) 进行分析,以识别疾病亚表型。然而,先前的方法没有捕捉到时间信息,并且对聚类过程中亚表型之间的关系做出了不确定的假设。
我们开发了一种基于临床变量的时间感知软聚类算法,用于使用 EHR 中可用的数据识别败血症亚表型。
我们确定了六个新的败血症混合亚表型,并评估了它们在医学上的合理性。此外,我们还使用逻辑回归构建了一个早期预警败血症预测模型。
我们的结果表明,这些新的败血症混合亚表型很有希望提供关于败血症相关器官功能障碍和败血症恢复轨迹的更准确信息,这对于指导管理决策和败血症预后非常重要。