Suppr超能文献

基于 EHR 的时间感知软聚类进行脓毒症的软表型分析。

Soft phenotyping for sepsis via EHR time-aware soft clustering.

机构信息

Department of Electrical & Computer Engineering, Duke University, Durham, 27708, NC, USA.

Department of Statistical Science, Duke University, Durham, 27708, NC, USA.

出版信息

J Biomed Inform. 2024 Apr;152:104615. doi: 10.1016/j.jbi.2024.104615. Epub 2024 Feb 27.

Abstract

OBJECTIVE

Sepsis is one of the most serious hospital conditions associated with high mortality. Sepsis is the result of a dysregulated immune response to infection that can lead to multiple organ dysfunction and death. Due to the wide variability in the causes of sepsis, clinical presentation, and the recovery trajectories, identifying sepsis sub-phenotypes is crucial to advance our understanding of sepsis characterization, to choose targeted treatments and optimal timing of interventions, and to improve prognostication. Prior studies have described different sub-phenotypes of sepsis using organ-specific characteristics. These studies applied clustering algorithms to electronic health records (EHRs) to identify disease sub-phenotypes. However, prior approaches did not capture temporal information and made uncertain assumptions about the relationships among the sub-phenotypes for clustering procedures.

METHODS

We developed a time-aware soft clustering algorithm guided by clinical variables to identify sepsis sub-phenotypes using data available in the EHR.

RESULTS

We identified six novel sepsis hybrid sub-phenotypes and evaluated them for medical plausibility. In addition, we built an early-warning sepsis prediction model using logistic regression.

CONCLUSION

Our results suggest that these novel sepsis hybrid sub-phenotypes are promising to provide more accurate information on sepsis-related organ dysfunction and sepsis recovery trajectories which can be important to inform management decisions and sepsis prognosis.

摘要

目的

败血症是与高死亡率相关的最严重的医院病症之一。败血症是感染引起的免疫反应失调的结果,可导致多器官功能障碍和死亡。由于败血症的病因、临床表现和恢复轨迹存在广泛的可变性,确定败血症的亚表型对于深入了解败血症的特征、选择有针对性的治疗方法和干预的最佳时机以及改善预后至关重要。先前的研究已经使用器官特异性特征描述了败血症的不同亚表型。这些研究应用聚类算法对电子病历 (EHR) 进行分析,以识别疾病亚表型。然而,先前的方法没有捕捉到时间信息,并且对聚类过程中亚表型之间的关系做出了不确定的假设。

方法

我们开发了一种基于临床变量的时间感知软聚类算法,用于使用 EHR 中可用的数据识别败血症亚表型。

结果

我们确定了六个新的败血症混合亚表型,并评估了它们在医学上的合理性。此外,我们还使用逻辑回归构建了一个早期预警败血症预测模型。

结论

我们的结果表明,这些新的败血症混合亚表型很有希望提供关于败血症相关器官功能障碍和败血症恢复轨迹的更准确信息,这对于指导管理决策和败血症预后非常重要。

相似文献

1
Soft phenotyping for sepsis via EHR time-aware soft clustering.
J Biomed Inform. 2024 Apr;152:104615. doi: 10.1016/j.jbi.2024.104615. Epub 2024 Feb 27.
2
Weakly Semi-supervised phenotyping using Electronic Health records.
J Biomed Inform. 2022 Oct;134:104175. doi: 10.1016/j.jbi.2022.104175. Epub 2022 Sep 5.
3
Automated feature selection of predictors in electronic medical records data.
Biometrics. 2019 Mar;75(1):268-277. doi: 10.1111/biom.12987. Epub 2019 Apr 2.
7
Sepsis : definition, development and application of an electronic phenotype for sepsis.
J Med Microbiol. 2025 Mar;74(3). doi: 10.1099/jmm.0.001986.
9
High-throughput phenotyping with temporal sequences.
J Am Med Inform Assoc. 2021 Mar 18;28(4):772-781. doi: 10.1093/jamia/ocaa288.
10
A clustering approach for detecting implausible observation values in electronic health records data.
BMC Med Inform Decis Mak. 2019 Jul 23;19(1):142. doi: 10.1186/s12911-019-0852-6.

本文引用的文献

1
Sepsis Prediction Model for Determining Sepsis vs SIRS, qSOFA, and SOFA.
JAMA Netw Open. 2023 Aug 1;6(8):e2329729. doi: 10.1001/jamanetworkopen.2023.29729.
2
Timeline Registration for Electronic Health Records.
AMIA Jt Summits Transl Sci Proc. 2023 Jun 16;2023:291-299. eCollection 2023.
3
Online Critical-State Detection of Sepsis Among ICU Patients using Jensen-Shannon Divergence.
AMIA Annu Symp Proc. 2023 Apr 29;2022:982-991. eCollection 2022.
4
Trends and opportunities in computable clinical phenotyping: A scoping review.
J Biomed Inform. 2023 Apr;140:104335. doi: 10.1016/j.jbi.2023.104335. Epub 2023 Mar 16.
5
Machine learning approaches for electronic health records phenotyping: a methodical review.
J Am Med Inform Assoc. 2023 Jan 18;30(2):367-381. doi: 10.1093/jamia/ocac216.
6
Sepsis subphenotyping based on organ dysfunction trajectory.
Crit Care. 2022 Jul 3;26(1):197. doi: 10.1186/s13054-022-04071-4.
9
Longitudinal K-means approaches to clustering and analyzing EHR opioid use trajectories for clinical subtypes.
J Biomed Inform. 2021 Oct;122:103889. doi: 10.1016/j.jbi.2021.103889. Epub 2021 Aug 16.
10
Sepsis Subclasses: A Framework for Development and Interpretation.
Crit Care Med. 2021 May 1;49(5):748-759. doi: 10.1097/CCM.0000000000004842.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验