Suppr超能文献

类器官和器官芯片在肾脏病模型中的应用。

Kidney Disease Modeling with Organoids and Organs-on-Chips.

机构信息

Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, USA; email:

Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA.

出版信息

Annu Rev Biomed Eng. 2024 Jul;26(1):383-414. doi: 10.1146/annurev-bioeng-072623-044010. Epub 2024 Jun 20.

Abstract

Kidney disease is a global health crisis affecting more than 850 million people worldwide. In the United States, annual Medicare expenditures for kidney disease and organ failure exceed $81 billion. Efforts to develop targeted therapeutics are limited by a poor understanding of the molecular mechanisms underlying human kidney disease onset and progression. Additionally, 90% of drug candidates fail in human clinical trials, often due to toxicity and efficacy not accurately predicted in animal models. The advent of ex vivo kidney models, such as those engineered from induced pluripotent stem (iPS) cells and organ-on-a-chip (organ-chip) systems, has garnered considerable interest owing to their ability to more accurately model tissue development and patient-specific responses and drug toxicity. This review describes recent advances in developing kidney organoids and organ-chips by harnessing iPS cell biology to model human-specific kidney functions and disease states. We also discuss challenges that must be overcome to realize the potential of organoids and organ-chips as dynamic and functional conduits of the human kidney. Achieving these technological advances could revolutionize personalized medicine applications and therapeutic discovery for kidney disease.

摘要

肾脏疾病是全球范围内的一个健康危机,影响着全球超过 8.5 亿人。在美国,肾脏疾病和器官衰竭的年度医疗保险支出超过 810 亿美元。由于对人类肾脏疾病发病和进展的分子机制缺乏深入了解,针对特定疗法的研发工作受到限制。此外,90%的药物候选物在人体临床试验中失败,这通常是由于毒性和疗效在动物模型中无法准确预测。体外肾脏模型的出现,如诱导多能干细胞(iPS)和器官芯片(organ-chip)系统工程化的模型,由于其能够更准确地模拟组织发育和患者特异性反应以及药物毒性,因此引起了广泛关注。本综述描述了利用 iPS 细胞生物学开发肾脏类器官和器官芯片的最新进展,以模拟人类特异性肾脏功能和疾病状态。我们还讨论了必须克服的挑战,以实现类器官和器官芯片作为人类肾脏动态和功能导管的潜力。实现这些技术进步可能会彻底改变肾脏疾病的个性化医疗应用和治疗发现。

相似文献

1
Kidney Disease Modeling with Organoids and Organs-on-Chips.类器官和器官芯片在肾脏病模型中的应用。
Annu Rev Biomed Eng. 2024 Jul;26(1):383-414. doi: 10.1146/annurev-bioeng-072623-044010. Epub 2024 Jun 20.
4
Organoids and organ chips in ophthalmology.眼科学中的类器官和器官芯片。
Ocul Surf. 2021 Jan;19:1-15. doi: 10.1016/j.jtos.2020.11.004. Epub 2020 Nov 18.
6
Human reconstructed kidney models.人源重建肾模型。
In Vitro Cell Dev Biol Anim. 2021 Feb;57(2):133-147. doi: 10.1007/s11626-021-00548-8. Epub 2021 Feb 16.
7
Stem cell-based Lung-on-Chips: The best of both worlds?基于干细胞的肺芯片:两全其美?
Adv Drug Deliv Rev. 2019 Feb 1;140:12-32. doi: 10.1016/j.addr.2018.07.005. Epub 2018 Jul 25.
10
Organoids: Avatars for Personalized Medicine.类器官:个性化医疗的化身。
Keio J Med. 2019;68(4):95. doi: 10.2302/kjm.68-006-ABST.

引用本文的文献

本文引用的文献

2
Translating Organoids into Artificial Kidneys.将类器官转化为人工肾脏
Curr Transplant Rep. 2022;9(4):276-286. doi: 10.1007/s40472-022-00383-0. Epub 2022 Oct 25.
10
Principles of human and mouse nephron development.人类和小鼠肾单位发育的原理。
Nat Rev Nephrol. 2022 Oct;18(10):628-642. doi: 10.1038/s41581-022-00598-5. Epub 2022 Jul 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验