Ahmed Md Redwan, Rahman Hamdadur, Limon Zishad Hossain, Siddiqui Md Ismail Hossain, Khan Mahbub Alam, Pranta Al Shahriar Uddin Khondakar, Haque Rezaul, Swapno S M Masfequier Rahman, Cho Young-Im, Abdallah Mohamed S
Department of Computer Science and Engineering, East West University, Dhaka 1212, Bangladesh.
Department of Management Information System, International American University, 3440 Wilshire Blvd. STE 1000, Los Angeles, CA 90010, USA.
Bioengineering (Basel). 2025 Jun 13;12(6):651. doi: 10.3390/bioengineering12060651.
Early and accurate detection of breast cancer is essential for reducing mortality rates and improving clinical outcomes. However, deep learning (DL) models used in healthcare face significant challenges, including concerns about data privacy, domain-specific overfitting, and limited interpretability. To address these issues, we propose BreastSwinFedNetX, a federated learning (FL)-enabled ensemble system that combines four hierarchical variants of the Swin Transformer (Tiny, Small, Base, and Large) with a Random Forest (RF) meta-learner. By utilizing FL, our approach ensures collaborative model training across decentralized and institution-specific datasets while preserving data locality and preventing raw patient data exposure. The model exhibits strong generalization and performs exceptionally well across five benchmark datasets-BreakHis, BUSI, INbreast, CBIS-DDSM, and a Combined dataset-achieving an F1 score of 99.34% on BreakHis, a PR AUC of 98.89% on INbreast, and a Matthews Correlation Coefficient (MCC) of 99.61% on the Combined dataset. To enhance transparency and clinical adoption, we incorporate explainable AI (XAI) through Grad-CAM, which highlights class-discriminative features. Additionally, we deploy the model in a real-time web application that supports uncertainty-aware predictions and clinician interaction and ensures compliance with GDPR and HIPAA through secure federated deployment. Extensive ablation studies and paired statistical analyses further confirm the significance and robustness of each architectural component. By integrating transformer-based architectures, secure collaborative training, and explainable outputs, BreastSwinFedNetX provides a scalable and trustworthy AI solution for real-world breast cancer diagnostics.
早期准确检测乳腺癌对于降低死亡率和改善临床结果至关重要。然而,医疗保健领域使用的深度学习(DL)模型面临重大挑战,包括对数据隐私、特定领域过拟合和有限可解释性的担忧。为了解决这些问题,我们提出了BreastSwinFedNetX,这是一个启用联邦学习(FL)的集成系统,它将Swin Transformer的四个层次变体(Tiny、Small、Base和Large)与随机森林(RF)元学习器相结合。通过利用联邦学习,我们的方法确保在分散的、特定机构的数据集上进行协作模型训练,同时保留数据局部性并防止原始患者数据暴露。该模型具有很强的泛化能力,在五个基准数据集——BreakHis、BUSI、INbreast、CBIS-DDSM和一个组合数据集上表现出色,在BreakHis上F1分数达到99.34%,在INbreast上PR AUC达到98.89%,在组合数据集上马修斯相关系数(MCC)达到99.61%。为了提高透明度和临床应用率,我们通过Grad-CAM纳入可解释人工智能(XAI),突出类别判别特征。此外,我们将该模型部署在一个实时网络应用程序中,该应用程序支持不确定性感知预测和临床医生交互,并通过安全的联邦部署确保符合GDPR和HIPAA。广泛的消融研究和配对统计分析进一步证实了每个架构组件的重要性和稳健性。通过集成基于Transformer的架构、安全的协作训练和可解释的输出,BreastSwinFedNetX为现实世界的乳腺癌诊断提供了一个可扩展且值得信赖的人工智能解决方案。