Suppr超能文献

在真实世界临床实践中使用影像组学模型预测具有临床意义的前列腺癌:一项回顾性多中心研究

Prediction of clinically significant prostate cancer using radiomics models in real-world clinical practice: a retrospective multicenter study.

作者信息

Bao Jie, Qiao Xiaomeng, Song Yang, Su Yueting, Ji Libiao, Shen Junkang, Yang Guang, Shen Hailin, Wang Ximing, Hu Chunhong

机构信息

Department of Radiology, The First Affiliated Hospital of Soochow University, 188#, Shizi Road, Suzhou, Jiangsu, 215006, China.

Scientific Marketing, Siemens Healthineers, Shanghai 430#, Linqing Road, Shanghai, 201318, China.

出版信息

Insights Imaging. 2024 Feb 29;15(1):68. doi: 10.1186/s13244-024-01631-w.

Abstract

PURPOSE

To develop and evaluate machine learning models based on MRI to predict clinically significant prostate cancer (csPCa) and International Society of Urological Pathology (ISUP) grade group as well as explore the potential value of radiomics models for improving the performance of radiologists for Prostate Imaging Reporting and Data System (PI-RADS) assessment.

MATERIAL AND METHODS

A total of 1616 patients from 4 tertiary care medical centers were retrospectively enrolled. PI-RADS assessments were performed by junior, senior, and expert-level radiologists. The radiomics models for predicting csPCa were built using 4 machine-learning algorithms. The PI-RADS were adjusted by the radiomics model. The relationship between the Rad-score and ISUP was evaluated by Spearman analysis.

RESULTS

The radiomics models made using the random forest algorithm yielded areas under the receiver operating characteristic curves (AUCs) of 0.874, 0.876, and 0.893 in an internal testing cohort and external testing cohorts, respectively. The AUC of the adjusted_PI-RADS was improved, and the specificity was improved at a slight sacrifice of sensitivity. The participant-level correlation showed that the Rad-score was positively correlated with ISUP in all testing cohorts (r > 0.600 and p < 0.0001).

CONCLUSIONS

This radiomics model resulted as a powerful, non-invasive auxiliary tool for accurately predicting prostate cancer aggressiveness. The radiomics model could reduce unnecessary biopsies and help improve the diagnostic performance of radiologists' PI-RADS. Yet, prospective studies are still needed to validate the radiomics models further.

CRITICAL RELEVANCE STATEMENT

The radiomics model with MRI may help to accurately screen out clinically significant prostate cancer, thereby assisting physicians in making individualized treatment plans.

KEY POINTS

• The diagnostic performance of the radiomics model using the Random Forest algorithm is comparable to the Prostate Imaging Reporting and Data System (PI-RADS) obtained by radiologists. • The performance of the adjusted Prostate Imaging Reporting and Data System (PI-RADS) was improved, which implied that the radiomics model could be a potential radiological assessment tool. • The radiomics model lowered the percentage of equivocal cases. Moreover, the Rad-scores can be used to characterize prostate cancer aggressiveness.

摘要

目的

开发并评估基于磁共振成像(MRI)的机器学习模型,以预测临床显著前列腺癌(csPCa)和国际泌尿病理学会(ISUP)分级组,并探索影像组学模型在提高放射科医生对前列腺影像报告和数据系统(PI-RADS)评估性能方面的潜在价值。

材料与方法

回顾性纳入来自4个三级医疗中心的1616例患者。由初级、高级和专家级放射科医生进行PI-RADS评估。使用4种机器学习算法构建预测csPCa的影像组学模型。通过影像组学模型对PI-RADS进行调整。通过Spearman分析评估Rad评分与ISUP之间的关系。

结果

使用随机森林算法构建的影像组学模型在内部测试队列和外部测试队列中的受试者操作特征曲线下面积(AUC)分别为0.874、0.876和0.893。调整后的PI-RADS的AUC有所提高,特异性提高,但敏感性略有牺牲。受试者水平的相关性表明,在所有测试队列中Rad评分与ISUP呈正相关(r>0.600且p<0.0001)。

结论

该影像组学模型是一种强大的、非侵入性的辅助工具,可准确预测前列腺癌的侵袭性。影像组学模型可减少不必要的活检,并有助于提高放射科医生PI-RADS的诊断性能。然而,仍需要前瞻性研究进一步验证影像组学模型。

关键相关性声明

基于MRI的影像组学模型可能有助于准确筛选出临床显著前列腺癌,从而协助医生制定个体化治疗方案。

要点

• 使用随机森林算法的影像组学模型的诊断性能与放射科医生获得的前列腺影像报告和数据系统(PI-RADS)相当。• 调整后的前列腺影像报告和数据系统(PI-RADS)的性能得到改善,这意味着影像组学模型可能是一种潜在的放射学评估工具。• 影像组学模型降低了模棱两可病例的比例。此外,Rad评分可用于表征前列腺癌的侵袭性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3aa9/10904705/4013e27390e1/13244_2024_1631_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验