Suppr超能文献

放射组学中的可重复性与可解释性:一项批判性评估

Reproducibility and interpretability in radiomics: a critical assessment.

作者信息

Demircioğlu Aydın

机构信息

University Hospital Essen, Institute of Diagnostic and Interventional Radiology and Neuroradiology, Essen, Germany.

出版信息

Diagn Interv Radiol. 2024 Oct 21. doi: 10.4274/dir.2024.242719.

Abstract

Radiomics aims to improve clinical decision making through the use of radiological imaging. However, the field is challenged by reproducibility issues due to variability in imaging and subsequent statistical analysis, which particularly affects the interpretability of the model. In fact, radiomics extracts many highly correlated features that, combined with the small sample sizes often found in radiomics studies, result in high-dimensional datasets. These datasets, which are characterized by containing more features than samples, have different statistical properties than other datasets, thereby complicating their training by machine learning and deep learning methods. This review critically examines the challenges of both reproducibility issues and interpretability, beginning with an overview of the radiomics pipeline, followed by a discussion of the imaging and statistical reproducibility issues. It further highlights how limited model interpretability hinders clinical translation. The discussion concludes that these challenges could be mitigated by following best practices and by creating large, representative, and publicly available datasets.

摘要

放射组学旨在通过使用放射成像来改善临床决策。然而,由于成像和后续统计分析的变异性,该领域面临着可重复性问题的挑战,这尤其影响了模型的可解释性。事实上,放射组学提取了许多高度相关的特征,再加上放射组学研究中经常出现的小样本量,导致了高维数据集。这些数据集的特点是特征数量多于样本数量,具有与其他数据集不同的统计特性,从而使机器学习和深度学习方法对其进行训练变得复杂。本综述批判性地审视了可重复性问题和可解释性方面的挑战,首先概述了放射组学流程,接着讨论了成像和统计可重复性问题。它进一步强调了模型可解释性的局限性如何阻碍临床转化。讨论得出结论,遵循最佳实践并创建大型、有代表性且公开可用的数据集可以缓解这些挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验