文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过重新定位的重测研究评估前列腺病变中MRI影像组学特征的体内变异性。

In vivo variability of MRI radiomics features in prostate lesions assessed by a test-retest study with repositioning.

作者信息

Zhang Kevin Sun, Neelsen Christian Jan Oliver, Wennmann Markus, Hielscher Thomas, Kovacs Balint, Glemser Philip Alexander, Görtz Magdalena, Stenzinger Albrecht, Maier-Hein Klaus H, Huber Johannes, Schlemmer Heinz-Peter, Bonekamp David

机构信息

German Cancer Research Center (DKFZ), Division of Radiology, Heidelberg, Germany.

German Cancer Research Center (DKFZ), Division of Biostatistics, Heidelberg, Germany.

出版信息

Sci Rep. 2025 Aug 13;15(1):29703. doi: 10.1038/s41598-025-09989-7.


DOI:10.1038/s41598-025-09989-7
PMID:40804076
Abstract

Despite academic success, radiomics-based machine learning algorithms have not reached clinical practice, partially due to limited repeatability/reproducibility. To address this issue, this work aims to identify a stable subset of radiomics features in prostate MRI for radiomics modelling. A prospective study was conducted in 43 patients who received a clinical MRI examination and a research exam with repetition of T2-weighted and two different diffusion-weighted imaging (DWI) sequences with repositioning in between. Radiomics feature (RF) extraction was performed from MRI segmentations accounting for intra-rater and inter-rater effects, and three different image normalization methods were compared. Stability of RFs was assessed using the concordance correlation coefficient (CCC) for different comparisons: rater effects, inter-scan (before and after repositioning) and inter-sequence (between the two diffusion-weighted sequences) variability. In total, only 64 out of 321 (~ 20%) extracted features demonstrated stability, defined as CCC ≥ 0.75 in all settings (5 high-b value, 7 ADC- and 52 T2-derived features). For DWI, primarily intensity-based features proved stable with no shape feature passing the CCC threshold. T2-weighted images possessed the largest number of stable features with multiple shape (7), intensity-based (7) and texture features (28). Z-score normalization for high-b value images and muscle-normalization for T2-weighted images were identified as suitable.

摘要

尽管基于影像组学的机器学习算法在学术上取得了成功,但尚未应用于临床实践,部分原因是其可重复性有限。为了解决这个问题,本研究旨在识别前列腺MRI中用于影像组学建模的稳定影像组学特征子集。对43例接受临床MRI检查和研究性检查的患者进行了一项前瞻性研究,检查重复进行了T2加权成像和两种不同的扩散加权成像(DWI)序列,中间进行了重新定位。从MRI分割中提取影像组学特征(RF),并考虑了评分者内和评分者间的影响,比较了三种不同的图像归一化方法。使用一致性相关系数(CCC)评估RF在不同比较中的稳定性:评分者效应、扫描间(重新定位前后)和序列间(两种扩散加权序列之间)的变异性。总共,在321个提取的特征中,只有64个(约20%)表现出稳定性,即在所有设置下(5个高b值、7个表观扩散系数[ADC]和52个T2衍生特征)CCC≥0.75。对于DWI,主要基于强度的特征被证明是稳定的,没有形状特征超过CCC阈值。T2加权图像具有最多的稳定特征,包括多个形状特征(7个)、基于强度的特征(7个)和纹理特征(28个)。高b值图像的Z分数归一化和T2加权图像的肌肉归一化被认为是合适的。

相似文献

[1]
In vivo variability of MRI radiomics features in prostate lesions assessed by a test-retest study with repositioning.

Sci Rep. 2025-8-13

[2]
Machine learning models for discriminating clinically significant from clinically insignificant prostate cancer using bi-parametric magnetic resonance imaging.

Diagn Interv Radiol. 2024-10-1

[3]
Enhanced ISUP grade prediction in prostate cancer using multi-center radiomics data.

Abdom Radiol (NY). 2025-9

[4]
Radiomics feature stability and distinction power in organic low-contrast phantoms for novel CBCT imaging.

Z Med Phys. 2025-7-31

[5]
A deep learning derived prostate zonal volume-based biomarker from T2-weighted MRI to distinguish between prostate cancer and benign prostatic hyperplasia.

Med Phys. 2025-8

[6]
Exploring the associations between features from multi-parametric MR images in Glioblastoma using radiomics.

BMC Med Imaging. 2025-7-1

[7]
Enhancing Preoperative Diagnosis of Subscapular Muscle Injuries with Shoulder MRI-based Multimodal Radiomics.

Acad Radiol. 2025-2

[8]
The impact of uncertainty estimation on radiomic segmentation reproducibility and scan-rescan repeatability in kidney MRI.

Med Phys. 2025-7

[9]
Quantifying multi-institutional ADC measurement variability of 1.5 T MR-Linacs: A phantom and in vivo study.

Med Phys. 2025-3-13

[10]
The Role of Dynamic Contrast Enhanced Magnetic Resonance Imaging in Evaluating Prostate Adenocarcinoma: A Partially-Blinded Retrospective Study of a Prostatectomy Patient Cohort With Whole Gland Histopathology Correlation and Application of PI-RADS or TNM Staging.

Prostate. 2025-4

本文引用的文献

[1]
The clinical implications and interpretability of computational medical imaging (radiomics) in brain tumors.

Insights Imaging. 2025-3-30

[2]
Optimizing radiomics for prostate cancer diagnosis: feature selection strategies, machine learning classifiers, and MRI sequences.

Insights Imaging. 2024-11-4

[3]
Update on PI-RADS Version 2.1 Diagnostic Performance Benchmarks for Prostate MRI: Systematic Review and Meta-Analysis.

Radiology. 2024-8

[4]
Prostate cancer risk assessment and avoidance of prostate biopsies using fully automatic deep learning in prostate MRI: comparison to PI-RADS and integration with clinical data in nomograms.

Eur Radiol. 2024-12

[5]
Reproducible Radiomics Features from Multi-MRI-Scanner Test-Retest-Study: Influence on Performance and Generalizability of Models.

J Magn Reson Imaging. 2025-2

[6]
Development and validation of a clinical-radiomics model for prediction of prostate cancer: a multicenter study.

World J Urol. 2024-4-30

[7]
Radiomics feature reproducibility: The elephant in the room.

Eur J Radiol. 2024-6

[8]
Prediction of clinically significant prostate cancer using radiomics models in real-world clinical practice: a retrospective multicenter study.

Insights Imaging. 2024-2-29

[9]
Multi-sequence MRI radiomics of colorectal liver metastases: Which features are reproducible across readers?

Eur J Radiol. 2024-3

[10]
Application of a validated prostate MRI deep learning system to independent same-vendor multi-institutional data: demonstration of transferability.

Eur Radiol. 2023-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索