Suppr超能文献

ConcreteXAI:一个用于通过基于深度学习的方法进行混凝土强度预测的多变量数据集。

ConcreteXAI: A multivariate dataset for concrete strength prediction via deep-learning-based methods.

作者信息

Guzmán-Torres José A, Domínguez-Mota Francisco J, Alonso-Guzmán Elia M, Tinoco-Guerrero Gerardo, Martínez-Molina Wilfrido

机构信息

Civil Engineering Faculty, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán 58030, Mexico.

出版信息

Data Brief. 2024 Feb 20;53:110218. doi: 10.1016/j.dib.2024.110218. eCollection 2024 Apr.

Abstract

Concrete is a prominent construction material globally, owing to its reputed attributes such as robustness, endurance, optimal functionality, and adaptability. Formulating concrete mixtures poses a formidable challenge, mainly when introducing novel materials and additives and evaluating diverse design resistances. Recent methodologies for projecting concrete performance in fundamental aspects, including compressive strength, flexural strength, tensile strength, and durability (encompassing homogeneity, porosity, and internal structure), exist. However, actual approaches need more diversity in the materials and properties considered in their analyses. This dataset outlines the outcomes of an extensive 10-year laboratory investigation into concrete materials involving mechanical tests and non-destructive assessments within a comprehensive dataset denoted as ConcreteXAI. This dataset encompasses evaluations of mechanical performances and non-destructive tests. ConcreteXAI integrates a spectrum of analyzed mixtures comprising twelve distinct concrete formulations incorporating diverse additives and aggregate types. The dataset encompasses 18,480 data points, establishing itself as a cutting-edge resource for concrete analysis. ConcreteXAI acknowledges the influence of artificial intelligence techniques in various science fields. Emphatically, deep learning emerges as a precise methodology for analyzing and constructing predictive models. ConcreteXAI is designed to seamlessly integrate with deep learning models, enabling direct application of these models to predict or estimate desired attributes. Consequently, this dataset offers a resourceful avenue for researchers to develop high-quality prediction models for both mechanical and non-destructive tests on concrete elements, employing advanced deep learning techniques.

摘要

混凝土是全球一种重要的建筑材料,这得益于其诸如坚固性、耐久性、最佳功能性和适应性等著名特性。配制混凝土混合物是一项艰巨的挑战,尤其是在引入新型材料和添加剂以及评估各种设计抗力时。目前存在一些预测混凝土基本性能的方法,包括抗压强度、抗弯强度、抗拉强度和耐久性(包括均匀性、孔隙率和内部结构)。然而,实际方法在其分析中考虑的材料和性能方面缺乏多样性。该数据集概述了一项为期10年的关于混凝土材料的广泛实验室研究成果,该研究涉及在一个名为ConcreteXAI的综合数据集中进行的力学测试和无损评估。该数据集包括力学性能评估和无损检测。ConcreteXAI整合了一系列经过分析的混合物,包括十二种不同的混凝土配方,这些配方包含了不同的添加剂和骨料类型。该数据集包含18480个数据点,成为混凝土分析的前沿资源。ConcreteXAI认识到人工智能技术在各个科学领域的影响。尤其地,深度学习成为一种用于分析和构建预测模型的精确方法。ConcreteXAI旨在与深度学习模型无缝集成,使这些模型能够直接应用于预测或估计所需属性。因此,该数据集为研究人员提供了一条丰富的途径,使其能够利用先进的深度学习技术为混凝土构件的力学和无损测试开发高质量的预测模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14aa/10904185/8ab47c42ad80/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验