Pellumbi Kevinjeorjios, Wickert Leon, Kleinhaus Julian T, Wolf Jonas, Leonard Allison, Tetzlaff David, Goy Roman, Medlock Jonathan A, Junge Puring Kai, Cao Rui, Siegmund Daniel, Apfel Ulf-Peter
Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT Osterfelder Straße 3 D-46047 Oberhausen Germany
Inorganic Chemistry I, Ruhr University Bochum Universitätsstraße 150 D-44780 Bochum Germany
Chem Sci. 2022 Oct 11;13(42):12461-12468. doi: 10.1039/d2sc04647d. eCollection 2022 Nov 2.
Electrosynthetic methods are crucial for a future sustainable transformation of the chemical industry. Being an integral part of many synthetic pathways, the electrification of hydrogenation reactions gained increasing interest in recent years. However, for the large-scale industrial application of electrochemical hydrogenations, low-resistance zero-gap electrolysers operating at high current densities and high substrate concentrations, ideally applying noble-metal-free catalyst systems, are required. Because of their conductivity, stability, and stoichiometric flexibility, transition metal sulfides of the pentlandite group have been thoroughly investigated as promising electrocatalysts for electrochemical applications but were not investigated for electrochemical hydrogenations of organic materials. An initial screening of a series of first row transition metal pentlandites revealed promising activity for the electrochemical hydrogenation of alkynols in water. The most active catalyst within the series was then incorporated into a zero-gap electrolyser enabling the hydrogenation of alkynols at current densities of up to 240 mA cm, Faraday efficiencies of up to 75%, and an alkene selectivity of up to 90%. In this scalable setup we demonstrate high stability of catalyst and electrode for at least 100 h. Altogether, we illustrate the successful integration of a sustainable catalyst into a scalable zero-gap electrolyser establishing electrosynthetic methods in an application-oriented manner.
电合成方法对于未来化学工业的可持续转型至关重要。作为许多合成途径的一个组成部分,氢化反应的电化近年来引起了越来越多的关注。然而,对于电化学氢化的大规模工业应用,需要在高电流密度和高底物浓度下运行的低电阻零间隙电解槽,理想情况下应用无贵金属催化剂体系。由于其导电性、稳定性和化学计量灵活性,镍黄铁矿族的过渡金属硫化物作为电化学应用中有前景的电催化剂已被深入研究,但尚未用于有机材料的电化学氢化。对一系列第一行过渡金属镍黄铁矿的初步筛选显示出在水中对炔醇进行电化学氢化具有良好的活性。然后将该系列中活性最高的催化剂纳入零间隙电解槽,能够在高达240 mA cm的电流密度、高达75%的法拉第效率和高达90%的烯烃选择性下对炔醇进行氢化。在这种可扩展的装置中,我们证明了催化剂和电极至少100小时的高稳定性。总之,我们展示了一种可持续催化剂成功集成到可扩展的零间隙电解槽中,以面向应用的方式建立了电合成方法。