Li Jialong, Wang Tianjun, Xia Shucai, Chen Wei, Ren Zefeng, Sun Min, Che Li, Yang Xueming, Zhou Chuanyao
Department of Physics, School of Science, Dalian Maritime University, 116026 Dalian, China.
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, China.
JACS Au. 2024 Jan 17;4(2):491-501. doi: 10.1021/jacsau.3c00600. eCollection 2024 Feb 26.
Site-selective excitation (SSE), which is usually realized by tuning the wavelength of absorbed light, is an ideal way to study bond-selective chemistry, analyze the crystal structure, investigate protein conformation, etc., eventually leading to active manipulation of desired processes. Herein, SSE has been explored in (110)-, (100)-, and (011)-faced rutile TiO, a prototypical material in both surface science and photocatalysis fields. Using ultraviolet photoelectron spectroscopy and photon energy-, substrate orientation-, and laser polarization-dependent two-photon photoemission spectroscopy (2PPE), intra-atomic 3d → 3d transition from the split Ti 3d orbitals, i.e., band gap states and excited states at ∼1.00 eV below and ∼2.40 eV above the Fermi level, respectively, has been proven for all of the samples, suggesting that it is a common property of this material. The distinct structure of rutile TiO results in the anisotropic 3d → 3d transitions with the transition dipole moment along the long axes ([110] and [11̅0]) of TiO blocking units. This anisotropy facilitates the selective excitation of Ti ions in the two types of TiO, which cannot be realized by conventional wavelength tuning, via polarization alignment of the excitation source. Discovery in this work builds the foundation for future investigation of site-selective photophysical and photochemical processes and eventually possible active manipulation in this material at the atomic level.
位点选择性激发(SSE)通常通过调节吸收光的波长来实现,是研究键选择性化学、分析晶体结构、研究蛋白质构象等的理想方法,最终可实现对所需过程的主动操控。在此,已在(110)面、(100)面和(011)面的金红石TiO₂中探索了SSE,金红石TiO₂是表面科学和光催化领域的典型材料。利用紫外光电子能谱以及与光子能量、衬底取向和激光偏振相关的双光子光电子能谱(2PPE),已证实所有样品中均存在从分裂的Ti 3d轨道进行的原子内3d→3d跃迁,即分别在费米能级以下约1.00 eV和以上约2.40 eV处的带隙态和激发态,这表明这是该材料的共同特性。金红石TiO₂独特的结构导致3d→3d跃迁具有各向异性,跃迁偶极矩沿TiO₂阻挡单元的长轴([110]和[11̅0])方向。这种各向异性有助于通过激发源的偏振对准,对两种类型的TiO₂中的Ti离子进行选择性激发,而这是传统波长调谐无法实现的。本工作中的发现为未来研究位点选择性光物理和光化学过程奠定了基础,并最终可能在该材料的原子水平上实现主动操控。