Suppr超能文献

用于自闭症谱系障碍预测的残差图变压器

Residual graph transformer for autism spectrum disorder prediction.

作者信息

Wang Yibin, Long Haixia, Bo Tao, Zheng Jianwei

机构信息

College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.

College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.

出版信息

Comput Methods Programs Biomed. 2024 Apr;247:108065. doi: 10.1016/j.cmpb.2024.108065. Epub 2024 Feb 19.

Abstract

Brain functional connectivity (FC) based on resting-state functional magnetic resonance imaging (rs-fMRI) has been in vogue to predict Autism Spectrum Disorder (ASD), which is a neuropsychiatric disease up the plight of locating latent biomarkers for clinical diagnosis. Albeit massive endeavors have been made, most studies are fed up with several chronic issues, such as the intractability of harnessing the interaction flourishing within brain regions, the astriction of representation due to vanishing gradient within deeper network architecture, and the poor interpretability leading to unpersuasive diagnosis. To ameliorate these issues, a FC-learned Residual Graph Transformer Network, namely RGTNet, is proposed. Specifically, we design a Graph Encoder to extract temporal-related features with long-range dependencies, from which interpretable FC matrices would be modeled. Besides, the residual trick is introduced to deepen the GCN architecture, thereby learning the higher-level information. Moreover, a novel Graph Sparse Fitting followed by weighted aggregation is proposed to ease dimensionality explosion. Empirically, the results on two types of ABIDE data sets demonstrate the meliority of RGTNet. Notably, the achieved ACC metric reaches 73.4%, overwhelming most competitors with merely 70.9% on the AAL atlas using a five-fold cross-validation policy. Moreover, the investigated biomarkers concord closely with the authoritative medical knowledge, paving a viable way for ASD-clinical diagnosis. Our code is available at https://github.com/CodeGoat24/RGTNet.

摘要

基于静息态功能磁共振成像(rs-fMRI)的脑功能连接性(FC)已成为预测自闭症谱系障碍(ASD)的热门方法,ASD是一种神经精神疾病,在寻找临床诊断潜在生物标志物方面面临困境。尽管已经付出了巨大努力,但大多数研究都受困于几个长期存在的问题,例如难以处理大脑区域内蓬勃发展的相互作用、由于更深层次网络架构中梯度消失导致的表征受限,以及导致诊断缺乏说服力的可解释性差。为了改善这些问题,我们提出了一种基于FC学习的残差图Transformer网络,即RGTNet。具体来说,我们设计了一个图编码器来提取具有长程依赖性的时间相关特征,并据此对可解释的FC矩阵进行建模。此外,引入残差技巧来加深GCN架构,从而学习更高层次的信息。此外,我们还提出了一种新颖的图稀疏拟合加权聚合方法,以缓解维度爆炸问题。根据经验,在两种类型的ABIDE数据集上的结果证明了RGTNet的优越性。值得注意的是,使用五折交叉验证策略在AAL图谱上实现的ACC指标达到了73.4%,超过了大多数竞争对手,他们的指标仅为70.9%。此外,研究的生物标志物与权威医学知识密切一致,为ASD临床诊断铺平了一条可行的道路。我们的代码可在https://github.com/CodeGoat24/RGTNet上获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验